
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Soma Lucz

Static analysis algorithms
for JavaScript

BACHELOR’S THESIS

Supervisors

Dávid Honfi
Gábor Szárnyas

Budapest, 2017

iii

Contents

Contents iii

Kivonat vii

Abstract viii

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement and Requirements . 2
1.3 Objectives and Contributions . 3
1.4 Structure of the Thesis . 3

2 Preliminaries 5
2.1 Static Analysis . 5

2.1.1 Introduction . 5
2.1.2 Source Code Transformation . 6
2.1.3 Use Cases and Limitations . 7

2.2 JavaScript . 8
2.2.1 Brief History of JavaScript . 8
2.2.2 The ECMAScript as a Standard and as a Language 8
2.2.3 The Process of Transpiling . 9
2.2.4 Looking into the Goals of JavaScript Static Analysis 10

2.3 Graph Databases . 11
2.3.1 The Property Graph Data Model . 11
2.3.2 Neo4j . 13
2.3.3 Cypher . 13

2.4 Running Example . 14

3 Related Work 15
3.1 Static Analysis Tools for JavaScript . 15

3.1.1 TAJS (Type Analysis for JavaScript) . 15

iv

3.1.2 Flow . 16
3.1.3 Tern . 16
3.1.4 SonarQube . 17
3.1.5 Shift . 17
3.1.6 Esprima . 18
3.1.7 Comparison of the Featured Tools . 18

3.2 Static Analysis Tools for Java . 19
3.2.1 FindBugs . 19
3.2.2 PMD . 19
3.2.3 jQAssistant . 19

3.3 Static Analysis Tools for C and C++ . 20
3.3.1 Clang . 20
3.3.2 PolySpace . 21
3.3.3 Coverity . 21

3.4 Most Used Error-Checking Constraints . 22

4 Overview of the Approach 23
4.1 Rearchitecturing the Codemodel-Rifle Framework 23

4.1.1 Open-Sourcing and Licensing Issues 25
4.1.2 Decomposing the Architecture . 25
4.1.3 Optimising for Testing Purposes . 27
4.1.4 Solutions to Speed-Related Issues . 27
4.1.5 Other Performances . 30
4.1.6 Summary of Refactoring . 31

4.2 In Development: Steps of Building New Analyses 32
4.2.1 Visualising the Defect with Codemodel-Visualisation 32
4.2.2 Describing the Defect Pattern . 32
4.2.3 Implementing the Analysis . 32

4.3 In Production: Steps of Operating Live . 33
4.3.1 Import: Synchronising the Repository into the Framework 33
4.3.2 Interconnect: Connecting the Related ECMAScript Modules 34
4.3.3 Analyse: Performing Analyses . 34

5 Elaboration of the Work�ow 35
5.1 Interconnecting Related ECMAScript Modules 35

5.1.1 The ECMAScript Module System . 36
5.1.2 Export Syntaxes and Cases . 36
5.1.3 Import Syntaxes and Cases . 38
5.1.4 Number of Export-Import Combinations 38
5.1.5 Compatibility of the Export-Import Cases 39
5.1.6 Unsupported Cases . 39

v

5.1.7 Pattern Generalisation Techniques 41
5.1.8 Implementing the Interconnection Algorithms 44

5.2 Simple Analyses by Pattern Matching . 48
5.2.1 Uninitialised Variables . 48
5.2.2 Globally Unused Exports . 49
5.2.3 Division By Zero (restricted) . 50
5.2.4 Misuse of Negative Integers as Function Arguments (restricted) . . 51

5.3 Complex Analyses with the Qualifier System 52
5.3.1 Transitive Defects . 52
5.3.2 Introduction: The Qualifier System 54
5.3.3 The Running Example’s Division By Zero (transitive) 55
5.3.4 Misuse of Negative Integers as Function Arguments (transitive) . . 57
5.3.5 Unreachable Code Caused by Exception (transitive) 57

5.4 Limitations of the Analyses . 58

6 Evaluation of Performance 59
6.1 Evaluation Environment . 59

6.1.1 Computer Configuration . 59
6.1.2 Software Configuration . 59

6.2 Measurement Goals and Methods . 60
6.2.1 Selection Criteria of the Analysed Source Code Repositories 60
6.2.2 Key Performance Indices . 60
6.2.3 Process of Measurement . 60

6.3 Measurement Results . 61
6.3.1 Synchronisation . 61
6.3.2 Interconnection . 63
6.3.3 The Qualifier System . 64
6.3.4 Analysis . 65
6.3.5 Total Duration of the Analysis Process 66

6.4 Defects Found by the Framework . 68
6.5 Threats to Validity . 68

7 Conclusion and Future Work 69
7.1 Summary of Contributions . 69

7.1.1 Scientific Contributions . 69
7.1.2 Engineering Contributions . 70

7.2 Future Work . 70

Acknowledgements 71

References 73

vi

Appendix 79
A Cypher Queries for Interconnecting the ASGs of Related Modules 79

A.1 exportAlias–importAlias . 79
A.2 exportAlias–importDefault . 80
A.3 exportAlias–importName . 81
A.4 exportDeclaration–importAlias . 82
A.5 exportDeclaration–importName . 83
A.6 exportDefaultDeclaration–importAlias 84
A.7 exportDefaultDeclaration–importDefault 85
A.8 exportDefaultDeclaration–importName 86
A.9 exportDefaultName–importAlias . 87
A.10 exportDefaultName–importDefault 88
A.11 exportDefaultName–importName . 89
A.12 exportName–importAlias . 90
A.13 exportName–importName . 91

B Cypher Queries of the Analyses . 92
B.1 nonInitialisedVariable . 92
B.2 unusedExport — exportName-exportAlias 93
B.3 unusedExport — exportDefault-exportDefaultName 94
B.4 unusedExport — exportDeclaration 95
B.5 divisionByZero-literal — restricted 96
B.6 squareRootNegativeArgument-literal — restricted 97
B.7 divisionByZero-variable — transitive 98
B.8 squareRootNegativeArgument-variable — transitive 99
B.9 unreachableCode-exception— transitive 100

C Cypher Queries of the Qualifier System . 101
C.1 Initialising the Qualifier System . 101
C.2 Tagging literals with EqualsZero . 101
C.3 Tagging throw statements with ExceptionThrown 101

D Cypher Queries for Qualifier Propagation . 102
D.1 Propagation along function calls . 102
D.2 Propagation along function declarations 102
D.3 Propagation along function return statements 102
D.4 Propagation along throw statements in functions 102
D.5 Propagation along variable declarations 103
D.6 Propagation along variable declaration statements 103
D.7 Propagation along variable initialisations 103
D.8 Propagation along variable references 103

E Selected Open-Source Repositories for the Evaluation 104
E.1 Repository and Graph Data . 104
E.2 Measurement Results . 106

vii

Kivonat Összetett szoftverek fejlesztése során a kódbázis növekedésével általában a kód-
ban megjelenő fejlesztői hibák száma is nő. Ezen hibák fokozott kockázatot jelenthetnek,
hiszen az esetlegesen helytelen, nemkívánatos működés mellett jelentős biztonsági rése-
ket eredményezhetnek. Kiaknázásuk által rosszindulatú támadók a szoftvert számukra
kedvező, az eredetileg tervezettől eltérő módon futtathatják.

A statikus forráskódanalízis egy, az iparban gyakran használt, általánosan elfogadott szoft-
vertesztelési megközelítés. Célja, hogyminél több szoftverfejlesztői hibát minél előbb, még
a program fejlesztési szakaszában – a kód lefordítása és lefuttatása nélkül – tárjon fel, csök-
kentve ezzel a működés közben felmerülő programhibák számát, és így a telepítés utáni
hibajavítással járó pluszköltségeket. Felhasználási lehetőségei közé tartozik a csoportos,
vállalati kódolási szabályoknak, stílusoknak való megfelelés ellenőrzése, illetve egyre több
statikus analízis eszköz nyújt támogatást egyre komolyabb logikai hibák fordítási vagy akár
kódírási idejű feltárásához is.

Napjaink folytonos integrációs infrastruktúrájába illesztve a statikus analízis hatékony
eszköz lehet a fejlesztői hibák feltárásában, és ezáltal az állandó kódminőség biztosításában.
Nagymértékű népszerűsége ellenére a JavaScript nyelvhez – annak dinamikus és gyenge
típusosságából eredő sajátosságok következményeként – kevés statikus analízis-eszköztár
létezik, és a rendelkezésre álló eszközök sem nyújtanak teljeskörű megoldást nagyméretű,
vállalati szintű JavaScript forráskódtárak összefüggő elemzéséhez. Gyakran felmerülő
probléma emellett az analitikus komplexitással általában fordítottan arányos sebesség:
sem folytonos integrációs infrastruktúrába, sem fejlesztőkörnyezetbe nem illeszthető olyan
eszköz, amely miatt a fordítási idő akár órákkal növekszik.

Dolgozatomban egy már létező, a fenti követelményeknek nagy részben eleget tevő sta-
tikus kódanalízis-keretrendszer bővítését tervezem meg, fejlesztem ki és értékelem. A
bővítés során egyrészt új – logikai és formai – JavaScript-alapú statikus analízis-kikötéseket
implementálok a rendszerhez. Másrészt lehetővé teszem, hogy a rendszer több összefüg-
gő JavaScript-modulon (forrásfájlon) átívelő, globális analízis-kikötések kiértékelésére is
képes legyen. Ezt kihasználva újabb kikötéseket implementálok, immáron több JavaScript-
modult összefüggően elemző analízisekhez.

viii

Abstract In complex software development, the number of developer errors usually
increases with the growth of the code base. These errors can be sufficiently dangerous:
besides causing improper or undesirable operation, they can lead to serious security
vulnerabilities. By exploiting them,malicious attackers can take control over the software in
some ways to run it according to their goals, or at least differently than originally intended.

Static source code analysis is a widely used, generally approved software testing approach.
Its goal is to discover as many human errors as possible, as early as possible —meaning
during development, without compiling and running the code—, in order to reduce the
number of software failures in production, and to minimize the extra costs of fixing bugs
after deployment. Possible applications of static analysis include verifying whether the
code complies with enterprise coding standards and styles, but more and more analysis
toolsets provide ways to detect more complex logical errors during compilation time, or
even development time.

In our days, static analysis toolsets integrated into Continous Integration (CI) workflows
can be an efficient way to detect developer errors at commit- and build-time, and thus to
provide constant code quality. Despite its widespread popularity, the JavaScript language
does not have extensive static analysis tooling— a possible cause can be the language’s
dynamic and weak typing —, and the available tools do not provide a full-scale solution to
coherently analyse large, enterprise-grade code repositories either. Moreover, increased
analysis complexity generally means significant reduction of speed, and of course a tool
can not be integrated neither into a CI workflow, nor into a development environment, if it
increases the build time with even several hours.

In this thesis I design, implement and evaluate the extension of an existing static code
analysis framework complying with most of the above detailed requirements. With the
extension on the one hand, I implement new JavaScript static analysis constraints— logical
and formal— for the framework. On the other hand, I extend the systemwith the capability
of analysing more than one JavaScript source code files coherently, thus I provide a way to
evaluate global analysis queries over more than one JavaScript modules related to each
other. Then I implement more analysis constraints, but now for coherently analysing more
than one, related JavaScript modules.

1

Chapter 1

Introduction

1.1 Context

Software development is a highly complex process involving many people, tools and meth-
ods. As a source code repository grows, code quality becomes an important aspect of the
development procedure: the software gets more andmore complex, the number of human
errors in the implementation gets higher and higher. It is important to find and fix these
errors as soon as possible: software defects found after deployment are 15 times more
costly than if they were found during implementation [1]. According to NIST, software
bugs cost approximately $59.5 billion for the US government annually [2].

Today’s developer tools in commercial and open-source projects generally include version
control systems (VCS) and continuous integration (CI) toolsets [3, 4]. Integrating code
quality assurance tools into the CI platform, or into the developers’ integrated development
environment (IDE), seems to be the practical choice for enforcing project-/company-wide
coding style compliance, and analysing the code deeper whether it contains defects.

A CI platform can be configured to scan and analyse the source code with external tools
when the developer commits their code to the central code repository. A commonworkflow
is the following:

1. the developer edits the code,
2. the developer commits and pushes the modified code into the central repository,
3. the VCS triggers a hook to inform the subscribers of the hook (including the CI

platform) that new code has been committed,
4. the CI platform analyses the source code with the static analysis platforms integrated

and configured by the user, and creates reports about the analyses,
5. the CI platform builds the code with its dependencies and passes on the built artifact

for further testing, and finally for deployment.

1.2 Problem Statement and Requirements 2

The reports created by the integrated static analysis tools give the developers insights about
code quality, and help them discover faults in the software before they reach the testing or
production stage.

This thesis focuses on the static analysis of JavaScript projects. As JavaScript is an inter-
preted language, it is generally considered not to require to be built before executing in
browsers and external runtimes. Nevertheless, it is sensible to involve CI into JavaScript-
projects for code quality and testing purposes, for a so-called transpiling step1, and for
automated deployment.

1.2 Problem Statement and Requirements

Despite being one of the most commonly used programming language in the world [5],
JavaScript does not have extensive static analysis tooling. There are static analysers for the
language, but either their capabilities are very limited, or they require special preparations,
like code annotations or special syntax flavours to work appropriately. There are only a
couple of analysers, which analyse more than one JavaScript modules coherently.

One solution is to modify already existing JavaScript projects according to the needs of the
analysis toolsets. If developers annotate their objects and/or use specially extended, non-
standard flavours of the JavaScript language, they can get benefits like type inference. For
already existing projects being developed for a longer amount of time, this solution is far
from ideal. Since more complex projects can excede 1 million lines of code in size, utilising
annotations or special, non-standard syntax flavours would involve huge refactoring costs.

Another possible solution would be a general JavaScript analysis framework with a static
type system and other analytical benefits based on nothing else, but the current JavaScript
standard2 [6]. This solution would require:

• a JavaScript parser complying with the latest ECMAScript standards to parse the
source files into a data structure that can be processed and manipulated effectively,

• a database technology for storing the data structure,
• an interface to manipulate the data structure for the purposes of the analyses,
• and—necessarily— the analyses’ algorithmic descriptions themselves, which reveal
the potential defects’ location in the inspected software.

The solution can introduceother usability requirements aswell, like incremental processing
of source code repositories for speed, multi-version data model in accordance with VCSs
so the analysis framework can be used by many developers simultaneously, or even a
centralised interface for collecting, storing, and presenting previous analysis results for

1The procedure of transpiling will be detailed in Chapter 2.
2According to the standard [6], the official name of the JavaScript language is ECMAScript.

1.3 Objectives and Contributions 3

fine-grained, per-person or per-workgroup efficiency analytics. This thesis focuses on the
source code analyses themselves.

1.3 Objectives and Contributions

Dániel Stein created a graph-based static analysis framework for JavaScript (ECMAScript),
called Codemodel-Rifle [7]. The project’s source code is available on GitHub [8]. The frame-
work stores the analysed source code repository’s each parsed file as a distinct property
graph, called an Abstract Semantic Graph (ASG), and gives us an interface to run analyses
via graph queries.

My main goal is to extend Codemodel-Rifle with several static analysis constraints. This
involves providing ways for evaluating analysis queries over more than one JavaScript
modules related to each other.

The framework and the analyses are tested with open-source projects and a closed-source,
security-oriented industrial product from Tresorit [9], a cloud security company located in
Budapest, Hungary.

1.4 Structure of the Thesis

The thesis is structured as follows. Chapter 2 presents the concept of static analysis, shortly
summarises JavaScript and its static analysis approaches to be detailed in Chapter 3, and
gives insights to the background technologies of the previouslymentionedCodemodel-Rifle
framework. It also provides an example which will accompany the reader throughout the
thesis. Chapter 3 specifies the currently known approaches and related work. Chapter 4
gives an overview of my approach of JavaScript static analysis using the Codemodel-Rifle
framework, and describes all performance- and modularity-related architectural changes
of the framework. Chapter 5 encompasses all semantic changes of the framework: it
details the implementation of the analysis algorithms and the additional proceedings about
coherently analysing more than one JavaScript modules related to each other. Chapter 6
demonstrates and evaluates the implemented analyses. Chapter 7 concludes the thesis
and presents possible future research directions.

5

Chapter 2

Preliminaries

This chapter presents the concept of static analysis, shortly summarises the JavaScript lan-
guage and its static analysis approaches, and gives insights to the background technologies
of the previously mentioned Codemodel-Rifle framework.

2.1 Static Analysis

2.1.1 Introduction

Static source code analysis is a software testing approach performed without compiling
and executing the program itself. Usually the source code of the analysed software first
gets transformed to a mathematical data structure — which is mostly a tree or a different
form of graph —, then the data structure is inspected by automated tools with the goal
of finding software defects. As static analysis is performed without actually executing the
program, software can be analysed in as early as its source code state, before getting to
testing or deployment.

Techniques for static analysis exist for almost 50 years [10]. A 1995 researchpaper concludes,
that “Static analysis is effective and complementary to dynamic testing. Hence its use is to
be recommended in the context of the majority of critical software.” [11] In 2017, open-
and closed-source static analysis tooling is quite extensive, and publicly available not only
for the academia and the commercial industry, but for open-source projects as well [12].

The sophistication and the generated reports’ quality of static analysis tools vary: some
report potential fault locations, others use mathematical tools to verify properties of a
software and its specification. Besides general code quality-related applications, static
analysis acquires a growing market share also in safety- and mission-critical systems for
exploring defects [13].

2.1 Static Analysis 6

2.1.2 Source Code Transformation

Software source code is a text, usually consisting of human-readable characters. Characters
formulate sequences of instructions by the specified grammar of the programming lan-
guage. To be executed on a computer, most programming languages need to be compiled
by a compiler first, meaning the source code has to be transformed into binary code or
bytecode to be executed. Other languages, called interpreted languages, do not need to be
compiled, they are interpreted and executed at runtime.1

Compiled languages’ are always analysed, at least at compilation time by the compiler. If
the software contains severe errors (like type association errors in strongly typed languages),
the compiler will abort its operation, thus the software can not be run, since it has not been
compiled. Considering interpreted languages do not need to be compiled, they are not
analysed by a compiler before running, and— generally — not analysed at all. Interpreted
languages’ static analysis is therefore beneficial to compensate the lack of a compiler-like
component in the software processing chain.

More than one static analysis methods can be run simultaneously on a project. As static
analysis inspects the source code without modifying the original, the operations of several
such tools are independent from each other. Therefore at compiled languages, added static
analyses can only compliment the compiler’s necessary analysis.

Usually three abstract data structures are used to represent software source code in a
mathematically defined form.

Abstract Syntax Tree (AST)

If the compiler or an analysis tool processes the source code and its parser transforms the
source code into an abstract data structure, it usually creates an Abstract Syntax Tree. It is
the tree-representation of the code, meaning every node in the tree is a semantic element
of the source code. The source code to AST transformation is vica versa unambiguous,
meaning the two structures are identical to each other regarding the program logic. It
is abstract in the sense of syntax: not all elements of the syntax is preserved in its AST,
meaning without the language grammar, transformation would not be possible.

Abstract Semantic Graph (ASG)

A more abstract representation of the source code (or an AST) can be an Abstract Semantic
Graph. Derived semantic information added to theAST can result in a graphwhichprovides
more insights into the structure of the program: it can reveal data about variable and
function scopes, and much more to be detailed later.

1JavaScript is an interpreted language.

2.1 Static Analysis 7

Control-Flow Graph (CFG)

Control-FlowGraphs or ExecutionGraphs contain all possible executionpaths of a program.
They are essential to compiler optimisations and widely used in static analysis tools.

2.1.3 Use Cases and Limitations

Static analysis use cases are generally code quality-related: on the one hand, the program
under development should comply to specified programming styles and rules, on the other
hand, the number of defects in the software should be as low as possible, ideally zero. If
the software under development is part of a mission-critical solution, finding and fixing
defects is essential.

Code style analysers and code formatters are used to enforce team- or company-wide
coding styles. Linters are rule-based tools: they reveal simple programming errors and
poorly used programming constructs. Pattern-matching techniques supplemented with
algorithms to manipulate the representing data structure can be efficient to obtain deeper
insights of the source code: this approach is to be detailed later being one of the subjects of
this thesis. Static analysis with methods of formal verification uses mathematical models
and methods to prove well-defined statements about the inspected source code.

Static analysis is limited in many ways. It often provides false values: false positives are
issues which do not have real significance or are not even true, false negatives are real
issues not being reported by the analysis tool. A framework is considered to be sound if
all defects checked for are reported by the tool: there are no false negatives but there can
be false positives. A general approach of static analysis frameworks is to be sound, and
simultaneously avoid extensive reporting of false positives [10].

Regarding limitations, time and resources are also important aspects. An analysis tool can
not be utilised efficiently, if the amount of either time or resources consumed by an analysis
is too high. Even if it was theoretically possible to create a tool which finds every possible
defects in a piece of source code, this tool would presumably consume so much time and
resources for an analysis that there would be no appropriate use case for operating it [14].

Exploring execution paths greatly benefits static analysis proceedings, as it provides extra
information about program states. Nevertheless, exploring all possible execution paths of
a program is very costly: if a procedure contains n branches without loops, the number of
intraprocedural execution paths would be 2n [14]. And even if a tool would encapsulate
so much resources that it would be capable of exploring all possible executions paths,
the set of possible inputs, whose cardinality is typically infinite, would still not be taken
into account. Since Alan Turing proved the halting problem to be generally undecidable
over Turing-machines [15], we can conclude that — generally — some questions about a
software can not be answered only by inspecting its source code.

2.2 JavaScript 8

2.2 JavaScript

JavaScript is a high-level, run-time interpreted language, featuring object-oriented capa-
bilities. Being part of the core of the World Wide Web [16], it is one of the most commonly
used programming languages in the world [5].

2.2.1 Brief History of JavaScript

Like all new technologies, JavaScript evolved very fast in the beginnings. The basics of the
language was developed in 10 days by Brendan Eich, then-employee of Netscape Com-
munications [17]. The language had multiple names over the time: first it was Mocha,
then LiveScript, then in December 1995, it was renamed to JavaScript as a sort of mar-
keting movement [18], after seeing the then-popularity of the heavyweight Java language
developed by SunMicrosystems.

Initially, non-professional programmers were aimed by the idea to provide a portable,
embeddable programming language that can be executed in web browsers. Since the
syntax was closely similar to the syntax of C / C++ / Java, JavaScript rapidly gained traction.
In the time of writing this thesis, the language features browser-based client- and separate
runtime-based server-side capabilities [19] as well, and extensive tooling, package man-
agement [20], testing and build systems are available for automated operations in even
larger software development organisations.

2.2.2 The ECMAScript as a Standard and as a Language

There is a significant aspiration to standardise the JavaScript language with its core ca-
pabilities and data structures. The first intentions of standardisation began in 1997 by
Ecma International [18], resuling in Standard ECMA-262 [21]. The newest standard cur-
rently is the ECMA-262, 7th Edition (ES7) [6]. Apart from standardisation, there are several
implementations of JavaScript in interpreters like Chakra1, JScript2 and Google’s V83 [7].

Today’s growing tractionof standardised JavaScript, henceforth also referencedasECMAScript,
can be explainedwith several reasons. But—due to being untyped4 and dynamic5—, static
analysis of JavaScript is difficult. The ECMAScript standard enhances plain JavaScript with
several new programming structures making the languagemore expressive and sometimes

1https://github.com/Microsoft/ChakraCore
2https://msdn.microsoft.com/library/hbxc2t98.aspx
3https://github.com/v8/v8
4In JavaScript, no static types are assigned to entities.
5Meaning of dynamic here: contrary to static languages where compilation time checks play an important

role in verifying various properties of the program, dynamic languages’ several common programming be-
haviours are executed only at run-time. Considering a common example: in JavaScript we have the eval()
function to execute source code at run-time.

2.2 JavaScript 9

more simple [22]. Users of the language can write more coherent code by applying these
new language constructs as well as best practices making it easier to interpret the program
by a static analysis tool.

2.2.3 The Process of Transpiling

Transpiling is a word came into existence by mixing transforming and compiling. It is
a generally used process in the ECMAScript developer community to ensure backwards
compatibility of newer ECMAScript language standards, like ES6 and ES7.

Compiler A compiler is a software with the primary goal of transforming software source
code written in a high-level programming language into machine language, usually into a
form of binary code called object code [23]. Compiled languages like C, C++, Java, or C#
need to be compiled to be executed on a specific processor architecture.

Transpiler A source-to-source compiler or transpiler is a software which transforms soft-
ware source code written in a high-level programming language into another high-level
programming language. Ideally the two source codes are logically equivalent, meaning
that with given abstractions, the operation of the two different software is the same.1

Transpiling and compiling have a set of common processing steps [24]. First the source
code is parsed into an abstract mathematical form for effective manipulation, then, after
optimisations and transformations, both methods yield another kind of code. While com-
pilers’ output, being low-level machine code, can be generally executed on a computer
architecture without further transformation steps, transpilers’ output need further pro-
cessing. Considering transpiling interpreted languages’, the main use case is to provide
compatibility with older or other versions of the language.

Chrome 58 IE 11 iOS 9 Android 5.1

default function parameters — — —
spread (. . .) operator — —
for..of loops —
const
let — —
arrow functions — — —

Table 2.1 Excerpt from an ECMAScript 6 compatibility table [25]

1The two executed programs need to be logically equivalent, but do not need to correspond in every
technical aspects: there can be differences in machine-level operations and low-level proceedings.

2.2 JavaScript 10

In the world of JavaScript, compatibility is a ubiquitous problem, see Table 2.1. Consider-
ing all the different browsers and server runtimes, and the slow progression of adopting
JavaScript standards, transpiling has an important role in ensuring that the software works
on a broad scale of platforms: code written in a modern syntax like ES6 can easily be
transpiled into an universally supported syntax like plain JavaScript.

Figure 2.1 shows two logically equivalent pieces of code: the second one (plain JavaScript) is
created by transpiling the first one (ECMAScript 6) with a popular, automated transpilation
tool, babel1. As the example shows, new language constructs can make the code much
more concise, while the transpiled alternative provides compatibility with older desktop
browsers and server runtimes.

The first piece of code uses ES6 constructs for simplicity:

[1, 2, 3].map(n => n ** 2);

The second piece of code uses widely-supported plain
JavaScript constructs only, and is created by transpiling the
first piece of code with babel:

[1, 2, 3].map(function (n) {
return Math.pow(n, 2);

});

Figure 2.1 A transpilation example

2.2.4 Looking into the Goals of JavaScript Static Analysis

As JavaScript is an interpreted language not being checked by a compiler by default at
compilation time [11], it is recommended to apply static analysis during thedevelopment of,
or before deploying a JavaScript application. Due to its dynamic and untyped2 nature [16],
static analysis for the language is a challenging task. There are several existing approaches
focusing mainly on defects detection [27, 28, 29], but few of them are ready for production
usage, and most of them lack compatibility with recent ECMAScript versions.

Being untyped, an obvious analysis goal is type inference: checking type correctness can
eliminate several defects from software. Security demands imply that deeper, logical
analysis of JavaScript code is needed. Besides security, the development procedure itself
can also benefit from static analysis: there are features like automatic stub generation or
auto-complete [27] in several development tools [30, 31].

1http://babeljs.io
2TypeScript, a strict superset of JavaScript adds static typing to the language [26].

2.3 Graph Databases 11

2.3 Graph Databases

Being graphs, developing new data structures for Abstract Syntax Trees, Abstract Semantic
Graphs and Control-Flow Graphs would be superfluous: they can be practically stored
in graph databases. There are established vendors on the open-source and also on the
closed-source market [32, 33, 34, 35, 36] providing databases with either a native graph
storage model, or with support for storing graphs over an underlying data model other
than a graph. For manipulating data, they provide well-defined and well-documented
interfaces instead of ad-hoc solutions.

Graphs are mathematically defined data structures being broadly used in several fields of
computer science. Recent technologies and implementationsmade possible for developers
to easily embed graph data models into their applications. There are numerous real-world
scenarios which can be represented more efficiently as graphs (nodes connected to each
other by edges), than with the traditional, relational approach.

2.3.1 The Property Graph Data Model

It is a common way to define graphs as a set of objects, in which some object pairs are
connected to each other. In this model, an object is called vertex or node or point, and a
connection between two vertices is called edge or relation. Connections can be detailed
further by specifying their directionality, also they can be labeled to define them evenmore.
Similarly labeling vertices leads to the model of typed graphs. If we assign properties to the
nodes or relations, we get the model of property graphs. Properties, as shown in Figure 2.2,
are usually key-value pairs in the format of key = ‘value’. Generally, keys are strings,
and values represent common data types like string, integer, float, etc.

Bob
:Human

'gender' = 'male' : String
'age' = '27' : Integer

Alice
:Human

'gender' = 'female' : String
'age' = '24' : Integer

:LOVES
:IGNORES

Figure 2.2 Two people’s relationship modeled with a property graph

The Codemodel-Rifle framework uses property graphs for its internal data storage. The
parsed source code’s AST is transformed into an ASG, and is stored as a property graph:
nodes in the AST become property graph nodes, nested AST nodes are connected to each
other via labeled graph relations. Figure 2.3 shows the ASGof the simple JavaScript program
const PI = 3.141593; produced and visualised by Codemodel-Rifle.1

1Administrative properties and labels are omitted for the sake of simplicity, e.g. no identifiers are shown.

2.3 Graph Databases 12

AsgNode
BindingIdentifier

Binding
VariableReference

'session' = 'test' : String
'name' = 'PI' : String

AsgNode
VariableDeclaration

Node
FunctionDeclarationClassDeclarationVariableDeclaration

VariableDeclarationAssignmentTarget
 VariableDeclarationExpression

'session' = 'test' : String
'kind' = 'const' : String

AsgNode
Node

VariableDeclarator

'session' = 'test' : String

declarators

binding

AsgNode
LiteralNumericExpression

Expression

'value' = 3.141593 : double
'session' = 'test' : String

init

AsgNode
Scope

'type' = 'Module' : String
'session' = 'test' : String
'dynamic' = false : boolean

AsgNode
Map

'session' = 'test' : String

variables

AsgNode
Module
Program

'session' = 'test' : String

astNode

AsgNode
Variable

'session' = 'test' : String
'name' = 'PI' : String

PI

AsgNode
VariableDeclarationStatement

Statement

'session' = 'test' : String

items

AsgNode
Reference

'accessibility' = 'Write' : String
'session' = 'test' : String

references

AsgNode
Declaration

'kind' = 'Const' : String
'session' = 'test' : String

declarations

AsgNode
Scope

GlobalScope

'type' = 'Global' : String
'session' = 'test' : String
'dynamic' = true : boolean

children

astNode

node

declaration

node

Figure 2.3 const PI = 3.141593; in Abstract Semantic Graph format

2.3 Graph Databases 13

2.3.2 Neo4j

Amongst a handful of graph database vendors [37], Neo Technology’s Neo4j is themost pop-
ular one [38]. It features a pure graph data model, contrary to other vendors’ multi-model
approaches. Besides Neo Technology, Neo4j is backed by the open-source community
as well [39]. There are two variants: Community Edition and Enterprise Edition with an
extended feature set. Interestingly, open-source licensing is available for the Enterprise
Edition as well [40] (for closed-source software, commercial licensing is available [41]).

Neo4j provides two access models, described in the following paragraphs.

Embedded mode For JVM-based languages, a native API is exposed for data operations
with a very low latency. This makes the database directly embeddable to any software
written in a JVM-compatible language, but provides less scalability than the server mode.

Server/Remote mode The database can be operated as a separate server listening on its
binary Bolt protocol as well as on its HTTP REST interface. From scalability aspects, the
Enterprise Edition’s master-slave database replication1 is only available in server mode.

The Codemodel-Rifle framework uses Neo4j for its property graph storage. At first, the
database was embedded into the software, but due to licensing issues, the framework had
to be refactored to use Neo4j in server mode.2

2.3.3 Cypher

Cypher is a query language developed especially for graph databases by Neo Technol-
ogy [43]. Contrary to the usage of the native API, it is mostly usedwhenNeo4j is deployed in
server mode. Figure 2.4 shows that the language uses a sort of ASCII-art to represent nodes
and relationships: nodes are in parentheses, relationships are in brackets surrounded by
relationship direction information.

(Bob)-[:LOVES]->(Alice)

Figure 2.4 A basic Cypher example

Cypher syntax is elegant and expressive, thus very readable. Besides using it to represent
nodes and relationships, we can utilise it to access the database’s indexing capabilities and
stored procedures as well. Since complex pattern-matching conditions can be expressed
easily and intuitively in Cypher, it should be the primary way of accessing Neo4j instead of
the little bit faster but less readable API.

1At the time of this writing, multi-master replication is not offered by Neo4j [42].
2The licensing issues and the details and results of the refactoring are described in Section 3.1.

2.4 Running Example 14

2.4 Running Example

In this section I provide a couple of ECMAScript codes as a software defect example, which
accompanies the reader throughout the thesis. This example is to be used whenever a new
static analysis concept is introduced. There are two JavaScript modules in the example:
module exporter in the source file exporter.js and module importer in the source file
importer.js.

The first one exports a function, which happens to return 0, as a variable. The second one
imports the variable and tries to divide a numberwith the return value of the imported func-
tion variable. Through this example, I present that this and similar software defects can be
revealed by graph-based static analysis, even if the defect spansmore than one ECMAScript
modules (source files), and includes patterns which can not be directly matched by one
general graph pattern description. Figure 2.5 presents exporter.js. Figure 2.6 presents
importer.js.

var a = 0;

export default function b() {
let c = function d() {
return a;

};

return c();
};

Figure 2.5 Source file exporter.js

import defaultName from "exporter";

let a = 5 / defaultName();

Figure 2.6 Source file importer.js

15

Chapter 3

Related Work

This chapter specifies the currently known approaches and related work of static analysis
in general, and specifically for JavaScript.

3.1 Static Analysis Tools for JavaScript

This section introduces several static analysis tools for the main subject of this thesis, the
JavaScript language.

3.1.1 TAJS (Type Analysis for JavaScript)

TAJS is a static data flow analysis tool for JavaScript with the capability of inferring detailed
and sound type information using abstract interpretation [29]. In the time of this writing,
it fully supports the 3rd version of ECMAScript, and partially supports the 5th version2,
including its standard library, the HTML DOM, and the browser API [45].

The abstract interpretation approach consists of the following main points [46]:

1. construct the Control-Flow Graph of the program,
2. define a data flow lattice [29], which abstracts program data flow into a mathemati-

cally interpreted format,
3. define transfer functions, which abstracts the operations on the data flow lattice.

There is an Eclipse plug-in for TAJS, but according to the creators of the framework, it is
not ready for production usage [47].

2ECMAScript 5 is the most popular, and most broadly used version of ECMAScript, supported by most
of the desktop and mobile browsers and external runtimes [44]. This is the ECMAScript version I referred to
previously as plain JavaScript.

3.1 Static Analysis Tools for JavaScript 16

3.1.2 Flow

Flow is a static type checker for JavaScript developed and maintained by the Facebook
Open Source community [48]. Flow checks the code for defects based on static type anno-
tations [49]. Without explicit type annotations, Flow is still able to work by attempting to
infer types implicitly. Thus, into larger codebases, Flow can be introduced incrementally.

Like many other static analysis tools, Flow also aims for soundness, while preventing
extensive reporting of false positives. The developers of the tool identified two main goals:
precision and speed. According to the very imprecise documentation [50], Flow is made
to be practically precise by modeling the language’s essential characteristics accurately
enough to differentiate between intentional solutions and unintentional mistakes.

Flow’s speediness means to be part of the editing process: the goal is to be fast enough
for an IDE to show type information in real-time, during editing the code. To achieve this
speed, Flow uses file-level incremental processing, meaning only those files need to be
processed, which were changed since the last analysis.

3.1.3 Tern

From the Tern website: “Tern is a stand-alone code-analysis engine for JavaScript. It is
intended to be usedwith a code editor plug-in to enhance the editor’s support for intelligent
JavaScript editing.” [51] Tern provides features like editor auto-completion of variables
and properties, function argument hints, automatic refactoring, and finding the definition
of functions or variables. Being written in JavaScript, it is capable of running on external
runtimes and in web browsers as well.

The software is maintained on GitHub [52] by Marijn Haverbeke, developer of the Acorn
lightweight JavaScript parser. Acorn is used as the underlying parser for the Tern infras-
tructure, which consists of several components: the editor plug-ins communicate with the
Tern server, which is implemented on top of the server module, which uses the inference
engine to perform analyses [51].

Tern’s editor plug-ins’ list contains editors with significant or growing popularity:

• Emacs
• Vim
• Sublime Text
• Brackets
• Eclipse

At the time of this writing, the newest version of Tern is 0.21, implying that the tool is not
yet aimed for heavyweight production usage, but rather for experimental purposes.

3.1 Static Analysis Tools for JavaScript 17

3.1.4 SonarQube

SonarQube (formerly Sonar) is an open-source platform providing “Continuous Code
Quality as a Service” [53], backed by a Swiss software company called SonarSource. The
platform offers two functionality model for source code analysis:

• Used as a service, SonarQube analyses GitHub repositories online: an analysis is
triggered every time if new code is pushed to the repository. Analysis settings and
results are available on a customisable, per-project interface within the SonarQube
website after authentication.

• Used as an offline tool, SonarQube can be integrated into the build process with
plug-ins available for popular build and continuous integration tools like Maven,
Gradle, Jenkins and Apache Ant. It has a command-line interface as well, allowing
build-independent analyses.

Following the documentation [53], the platform’s Code Quality Model is based on three
types of rule-based constraints:

• bugs track code that is highly likely to yield unexpected behavior of the software,
• vulnerabilities are raised on code that is potentially vulnerable to exploitation, and
• code smells are code snippets that confuse maintainers being measured primarily
in terms of the time they will take to fix.

The platform supports a wide variety of programming languages: in the time of this writing,
there are rules for Java (411), C++ (315), Python (238), C# (229), C (225) and JavaScript (186),
besides others. As implementing constraints for new problems is highly encouraged in the
community, the list of rules is continuously expanding.

Apart from the basically linting-based rules of code smells constraints, the software is
capable of detecting commonbugs, pitfalls and vulnerabilities over JavaScript source codes.
Constraints in the bug category include inspecting whether non-empty statements alter
the control-flow, if non-existent variables or properties are referenced, or if conditionally
executed code blocks are not reachable, amongst others.

The inspections in the vulnerability category check for vulnerable functionality usage
patterns including dynamically injected and executed code, debugger messages, and using
the local storage of the browser, amongst others.

3.1.5 Shift

Shift is not a static analysis tool, but anAST toolset created anddeveloped by Shape Security,
consisting of several tools [54]. Besides others, Shift features a parser, a code generator,
and a scope analyser. It supports the full ECMAScript 7th Edition [54], and its parser and
scope analyser are foundations of the Codemodel-Rifle framework.

3.1 Static Analysis Tools for JavaScript 18

It is to be mentioned here, that Shift uses its own AST format, first announced by Shape
Security in late 2014, as their first open-source contribution. According to their reasoning, a
new ECMAScript AST format was needed because its predecessor, Mozilla’s SpiderMonkey
AST was not specifically created for static analysis purposes, but rather for an internal
representation only for interpretation.

Shift AST is said to comply with all aspects of a good AST-format, as

• “it minimizes the number of inhabitants that do not represent a program,
• it is at least partially homogenous to allow for a simple and efficient visitor,
• it does not impede moving, copying, or replacing subtrees,
• it discourages duplication in code that operates on it.” [55]

3.1.6 Esprima

Esprima is an ECMAScript parser with extended capabilities, like syntax validation. It
supports the full standard of ECMAScript 7th Edition. The open-source software is created
by Ariya Hidayat, engineer of Shape Security, and is maintained on GitHub [56].

3.1.7 Comparison of the Featured Tools

Table 3.1 presents a functional comparison of the featured JavaScript static analysis tools.
From the version number and open-source attributes like the number of contributors and
the license, the tool’s maturity and usability can be inferred.

TAJS Flow Tern SonarQube

ECMAScript support ES3 ES5 ES6 ES7
open-source
number of contributors 1 335 87 59
license Apache 2.0 BSD 3 MIT LGPL 3.0
current version v0.9-10 v0.45.0 0.21.0 6.3.2

infers types —
needs non-standard syntax — — —
checks code style — —
analyses vulnerabilities — —
functionally extensible — —
analyses related files — —

Table 3.1 Comparison of the featured JavaScript static analysis tools

3.2 Static Analysis Tools for Java 19

3.2 Static Analysis Tools for Java

This section introduces static analysis tools for Java, mainly for earning new ideas regarding
static analysis.

3.2.1 FindBugs

FindBugs is a static analysis tool for detecting bug patterns in Java code [57]. One of its
main techniques is to syntactically match source code to programming constructs marked
as suspicious programming practise. “For example, FindBugs checks that calls to wait(),
used in multi-threaded Java programs, are always within a loop–which is the correct usage
in most cases. In some cases, FindBugs also uses dataflow analysis to check for bugs. For
example, FindBugs uses a simple, intraprocedural (within one method) dataflow analysis
to check for null pointer dereferences. FindBugs can be expanded by writing custom bug
detectors in Java. We set FindBugs to report ‘medium’ priority warnings, which is the
recommended setting.” [58]

3.2.2 PMD

Similarly to FindBugs, PMD performs syntactic analysis on Java programs, but is does
not have a data flow component. “In addition to some detection of clearly erroneous
code, many of the ‘bugs’ PMD looks for are stylistic conventions whose violation might
be suspicious under some circumstances. For example, having a try statement with an
empty catch block might indicate that the caught error is incorrectly discarded. Because
PMD includes many detectors for bugs that depend on programming style, PMD includes
support for selecting which detectors or groups of detectors should be run.” [58]

3.2.3 jQAssistant

A German technology firm, Buschmais developed a component-based static analysis tool
for Java, called jQAssistant [59]. Similarly to the Codemodel-Rifle framework, jQAssistant
is built upon the Neo4j graph database. According to the documentation [60], the tool is to
be integrated into the build process to detect constraint violations and generate reports
about user defined concepts and metrics.

Analysis rules can be expressed in Neo4j’s graph query language, Cypher. However, instead
of the semantics of the source code itself, jQAssistant focuses on the software components
and their connections. Its features include validating dependencies between modules in
a project, enforcing naming conventions e.g. for test classes, packages, JPA entities, and
detecting common architectural problems like cyclic dependencies [60]. The products is
licensed underGNUGeneral Public License v3, allowing developers to use it in open-source
projects [61].

3.3 Static Analysis Tools for C and C++ 20

3.3 Static Analysis Tools for C and C++

This section introduces static analysis tools for C and C++, mainly for earning new ideas
regarding static analysis.

3.3.1 Clang

Besides serving as a compiler front-end for LLVM, Clang has a static analyser component
for finding bugs in C, C++, and Objective-C programs [62]. The tool can be used either as a
standalone command-line tool, or as an Xcode1 plug-in.

Clang uses static analysis based on compiler techniques. It is designed to report much
more information than GCC, using control-flow graph analysis. It features flow- and path-
sensitive analyses while preserving the overall form of the original source code [63]. The
tool can be integrated into IDEs, and supports automated refactoring.

Following [62], the checkers of Clang can be divided into six groups.

Core checkers Core checkers model core language features and analyse general software
defects like division by zero or null pointer deference. It features checks for arrays initialised
with zero size, uninitialised values used in assignments or branch conditions, or undefined
return values of a function.

C++ checkers As the name implies, these checkers perform analyses specifically for de-
fects related to the C++ language. Without counting checkers marked as experimental, the
category has only one member; it analyses double-free, use-after-free and offset problems
involving the delete keyword.

Dead code checkers This category also has only one member, which checks for values
stored to variables that are never read afterwards.

OS X checkers These checkers performObjective-C-specific checks and analyse if Apple’s
SDKs and APIs are used appropriately.

Security checkers Members of this category check for insecure API usage and perform
analyses based on the CERT Secure Coding Standards. Checks include verifying if return
values of insecure API calls are checked, or if a float value is used as a loop counter.

UNIX checkers These checkers analyseUNIX-specificdefect possibilities, likemismatched
memory deallocation, incompatible types used in malloc calls, or insecure API usage.

1Xcode is Apple’s integrated development environment only available for Apple’s macOS, containing a
suite of development tools for Apple platforms: macOS, iOS, watchOS and tvOS.

3.3 Static Analysis Tools for C and C++ 21

3.3.2 PolySpace

PolySpace Technologies, which first developed the PolySpace Verifier static analysis tool,
was later acquired by MathWorks. PolySpace Verifier has been reorganised into a suite,
which now features static analysis for C and C++. Similar to TAJS’s approach, PolySpace
uses the classic lattice-theoretic abstract interpretation technique. The underlying analyser
relies on a sound approximation of the set of all reachable states [10]. The tool features a
mathematical data structure named convex polyhedron1, several convex polyhedra encodes
the sets of states [64].

The tool is sound in the meaning that, given the full code base of the project, it computes
the superset of every reachable state. It is flow-sensitive, context-sensitive, features inter-
procedural analyses, and supports aliasing. “The properties checked by PolySpace Verifier
are in many cases similar as those checked e.g. by other commercial systems, but the
analysis ismore sophisticated taking account of non-trivial relationships between variables
(taking advantage of convex polyhedra) while other static analysis tools seem to cater only
for simple relationships (e.g. equalities between variables and variables being bound to
constant values or intervals of values).” [10]

PolySpace Verifier features checks for array conversion range extensions, return value
initializations, variable initializations, pointer initializations, scalar/float under- and over-
flows and division by zero, non-termination of calls and loops, correctness of function
arguments, unreachable code and many others [10].

In today’s product portfolio [65], Polyspace Bug Finder™ features the goal of locating
defects with static analysis, and Polyspace Code Prover™ is said to prove the absence of
run-time errors in C and C++ source code.

3.3.3 Coverity

Coverity Prevent, now part of Synopsys [66], is a static analysis tool created as a spin-off
from a research group at Stanford University. “In 2006 Coverity and Stanford were awarded
a substantial grant from the U.S. Department of Homeland Security to improve Coverity
tools to hunt for bugs and vulnerabilities in open-source software. During the first year
5,000 defects were fixed in some 50 open source projects. Updated results of the analyses
can be found on the web.

The tool itself is a data-flow analysis tool featuring inter-procedural analyses. The analysis
is neither sound nor complete, that is, there may be both defects which are not reported
and there may be false alarms. A substantial effort has however been put on eliminating
false positives, and the rate of these is clearly low (reportedly around 20 per cent).” [10]

1A convex polyhedron is an n-dimensional geometric shape where for any pair of points inside the shape
the straight line connecting the points is also inside the shape [10].

3.4 Most Used Error-Checking Constraints 22

Coverity features a different set of C and C++ checkers. For C, Coverity checks for resource
leaks, dereferencing/deallocating already deallocated memory, uninitialised variables,
unused pointer values, dead code, null pointer dereferences, misuse of negative integers
and functions that may return negative integers, and null returns, amongst others. For
C++, Coverity checks for errors in overriding virtual functions, resource leaks because of
missing destructors, past-the-end STL iterators, and uncaught exceptions, amongst others.

Coverity has concurrency and security checkers as well, such as checks for double locks
and missing releases, dangerous function calls like gets or strcpy, string overflows, and
incorrect usage of the chroot system call [10].

3.4 Most Used Error-Checking Constraints

According to the above related work, the following error-checking constraints are the most
widely used ones in static analysis tools:

• type correctness,
• uninitialised variables,
• unreachable code,
• division by zero,
• misuse of negative integers as function arguments.

23

Chapter 4

Overview of the Approach

This chapter gives anoverviewofmyapproachof JavaScript static analysis usingCodemodel-
Rifle, and describes all —modularity- and performance-related— architectural changes
of the framework.

4.1 Rearchitecturing the Codemodel-Ri�e Framework

Dániel Stein, creator of theCodemodel-Rifle framework, details the design of the framework
in his Master’s Thesis [7]. Following his thesis and my experiences with the framework,
Figure 4.1 and the below specification summarises the software’s original architecture:

• A source code file is delivered to Codemodel-Rifle via the HTTP REST API of the
framework’s embedded webserver as a text.

• The framework parses the incoming source file into an AST model with Shape Secu-
rity’s Shift parser.

• The framework performs scope analysis on the AST model with Shape Security’s
scope analyser, transforming the AST model into an ASGmodel.

• The ASGmodel is transformed to a property graph and is stored in the framework’s
embedded Neo4j graph database.

• Apart from importing a file, the framework is able to perform analyses on or visuali-
sation of a graph stored in its database, if requested over its REST API.

• Analysing more than one ECMAScript modules coherently is only minimally sup-
ported: interconnecting the relatedmodules’ subgraphs along the export and import
ECMAScript statements is implemented for one use case only, out of more than 80.

• The result of the analyses or the visualisation is returned via the REST API in JSON or
in a visual file format.

Codemodel-Rifle was notably refactored since then. This section introduces why refactor-
ing was necessary, and presents the details and the results of the process.

4.1 Rearchitecturing the Codemodel-Ri�e Framework 24

Figure 4.1 The original architecture of the Codemodel-Rifle framework

4.1 Rearchitecturing the Codemodel-Ri�e Framework 25

4.1.1 Open-Sourcing and Licensing Issues

The development of the Codemodel-Rifle framework was supported by the Fault-Tolerant
Systems ResearchGroup (FTSRG) of the Budapest University of Technology and Economics.
FTSRG’s decision — with the support of Dániel Stein — was to open-source the frame-
work under the Eclipse Public License, version 1.0 (EPLv1) [67]. This introduced licensing
problems as follows.

The framework uses Neo4j as its internal graph data storage, and Neo4j was embedded into
Codemodel-Rifle [7]. From the point of licensing, there is an important difference between
using the database via a network connection and embedding the database into software.
Since Neo4j’s Community Edition, used by Codemodel-Rifle, is licensed under GPLv3 [41],
it can be used remotely via a network connection with practically any license because of
the so-called application service provider loophole [68], but it can not be embedded into
applications which do not comply with GPLv3. As EPLv1 and GPLv3 are incompatible,
Neo4j can not be embedded into the open-sourced Codemodel-Rifle.

Consequently, a necessary step was to switch from embedded Neo4j to remote Neo4j
accessed via a driver. But, as native API-calls, which were extensively used by Codemodel-
Rifle, can not be used with driver-accessed remote Neo4j, this caused further problems;
these are subjects of the next subsections.

4.1.2 Decomposing the Architecture

Codemodel-Rifle’s first architecture was monolith. It embedded four key modules:

• a Neo4j graph database,
• awebserver exposing an HTTP REST API for interactions,
• the core module responsible for transforming source code into an ASG,
• and other application logic, e.g. for displaying and exporting AGSs into visual file
formats like PDF or PNG.

Analysing the graph was possible either by running built-in Cypher queries via dedicated
REST endpoints (e.g. /unusedfunctions), or by submitting custom Cypher queries to the
embedded database via the /run endpoint.

Decoupling, or minimising direct interdependencies between components is an important
aspect of software engineering. If a software is decomposed into smaller components
along well-defined interfaces, it becomesmodular: anymodule’s inner functionality can be
changed without affecting other modules, as long as the module implements the interface
it was bound to. Motivations to alter a module include performance issues, scalability
efforts, or changed domain logic. Codemodel-Rifle’s first architecture was well-designed
for easy manual testing and seemed to be an obvious solution for creating a small-scale
analysis software. But several reasons required the framework to becomemodular to adapt.

4.1 Rearchitecturing the Codemodel-Ri�e Framework 26

Detaching the Database

Apart from the licensing issues detailed above, using a remote Neo4j server as a database
instead of the embedded version comes with several benefits. The database can be out-
sourced onto a separate hardware or infrastructure: since analyses and graphmaintenance
can be demanding over large code repositories, providing dedicated resources for the
database is an obvious solution for possible performance issues and scalability.

With a remote Neo4j database, a custom database driver can be utilised. This driver can
be capable of incremental processing on the graph database level.1 Or it can provide
an impermanent, in-memory local database instance for testing and for developing new
analyses — to eliminate the need of installing a complete database server when long-term
persistency is not explicitly needed.2

As a result of the aforementioned benefits and licensing issues, the framework was refac-
tored to use a remote Neo4j server via a driver. This meant native API-calls were no longer
possible: interacting with the database has been restricted to Cypher queries provided via
the database driver. The Codemodel-Rifle framework extensively used native API-calls, so
all these function calls had to be rewritten into distinct Cypher queries. As Cypher queries
turned out to be notably slower than the API, when executed many queries at once, this
introduced performance issues. Solutions to these issues are described in the next sections.

Eliminating the Web Interface

The framework contained an embedded Grizzly [70] web server to expose an HTTP REST
API for user interactions. This was a convenient way for manual testing and a sensible
approach for operating the software in a prospective production environment as well. All
communication with the Codemodel-Rifle framework (operating as a server) could be
achieved via its HTTP REST API with tool like curl [71] or Postman [72] (in development),
or with an IDE or CI plugin (in production).

For automated testing, however, an HTTP REST API is inconvenient: solving important
testing issues like exception handling are not straightforward. Since the framework is not
yet ready for production use at all, but is heavily under development, an architectural
decision was to eliminate the web server, and focus on the core functionality: the analyses.
After removing the webserver from the architecture, the in-development way to supply
code repositories to the framework for analysis is via unit tests: each test has its resources
shipped along with the framework’s source code.

1Gábor Szárnyas et al. are developing a graph database driver named ingraph with the goal of evaluating
openCypher queries incrementally [69].

2Currently, the default configuration of the framework is to use an impermanent, in-memory graph
database accessed via a Neo4j-compatible database driver.

4.1 Rearchitecturing the Codemodel-Ri�e Framework 27

Separating the Visualisation Logic into an Isolated Project

Visualising the ASG of an imported JavaScript source code is key to get familiar with
Codemodel-Rifle’s ASG-semantics, as well as for developing new analyses. Figure 2.3
displays an example of an ASG created and visualised by Codemodel-Rifle. However, the
framework does not explicitly need this feature to perform analyses. Therefore it was a
rational step to separate the visualisation logic into an isolated project, which is called
Codemodel-Visualization.

4.1.3 Optimising for Testing Purposes

The framework used embedded Neo4j as its storage: the project’s folder contained a di-
rectory named database, in which the full Neo4j embedded graph database was stored.
Being embedded, the database instance was managed entirely by Codemodel-Rifle. After
refactoring the framework to use an external Neo4j database server accessed via a driver
because of the aforementioned licensing issues, testing became difficult. The following
database-related steps were needed to run unit tests:

• the Neo4j Community Edition server software needed to be downloaded,
• the designated directory to hold the database data needed to be selected,
• the Neo4j server software needed to be started,
• after the tests, the server needed to be stopped,
• the database needed to be flushed after each test to ensure the necessary level of
independence amongst the test cases.

This process can be partially automatedwith scripts, but it is still not a cleanway to perform
automated unit tests of Codemodel-Rifle.

As a solution, Gábor Szárnyas advised to use his neo4j-drivers project [73]. The package
contains wrappers for the Neo4j Java driver: the EmbeddedTestkitDrivermakes possible
to use a local, in-memory ImpermanentGraphDatabase accessed via a driver. Using an
impermanent, local database is convenient for use cases where persistency is not explicitly
needed— e.g. testing and developing new analyses —, since no external Neo4j database
needs to be installed and run. At the same time, Codemodel-Rifle can be easily reconfigured
for production environments, where the framework needs to persist its data in an actual
remote database. This reconfiguration only involves changing the framework’s database
driver in the DbServicesManager class to another Neo4j-compatible one.

4.1.4 Solutions to Speed-Related Issues: Object-Graph Mapping and the Cypher
Query Builder

Converting from embedded Neo4j to external, driver-accessed Neo4j, involving converting
from persistent driver-accessed Neo4j to in-memory driver-accessed Neo4j introduced no-

4.1 Rearchitecturing the Codemodel-Ri�e Framework 28

table slowness, making testing and developing new analyses inconvenient again. Table 4.1
compares the duration of visualising a simple JavaScript program (the runnning example’s
exportermodule seen on Figure 2.5) with the old embedded, and the new in-memory
driver-accessed approach.

embedded
database

in-memory
driver-accessed database

importing, transforming, storing 82 ms 14,816 ms
visualization 1,832 ms 2,456 ms

total 1,914 ms 17,272 ms

Table 4.1 Speed comparison between the two database approach1

Seeing measurement results in Table 4.1, it was necessary to optimise the framework’s
performance for the in-memory driver-accessed database scenario, because extensive
testing would not have been possible with such slowness. Apart from testing, optimisations
benefit the in-production performance as well, since the testing and the production envi-
ronments share the same interface: in both scenario, the database is accessed via a Neo4j
driver. Ideally, the optimisations should be configurable to adapt to both the testing and the
production environment. In the following paragraphs, I will summarise the optimisations
I performed on the Codemodel-Rifle framework.

InDániel Stein’s implementation [7], translating theASGmodel to theproperty graphmodel
happens simultaneously with actually storing the property graph model in the database.
If an element of the ASGmodel has been successfully translated into the property graph
model, it is stored in the database immediately. This can be optimised: by creating a
property graph model stored in Java objects, and then implementing a storage logic to
perform saving the objects into the database, the operative parameters of the storage logic
can be optimised directly to the currently used database driver.

Creating a specialised Object-Graph Mapping (OGM) Layer

Importing a repository can be summarised by two types of database-level action.

1. Creating nodes — the property graph model’s nodes get created in Neo4j.
2. Setting relationships — the property graph model’s relationships get set in Neo4j.

Therefore, amapping layer basically needs to translate two object types: nodes and relation-
ships. I mapped these two object types with the AsgNode and AsgRelation Java classes. An

1These measurements are only for demonstrating that the framework was so slow after the necessary
refactorings that it needed to be optimised even for testing. They are not aimed to be fully accurate and
complete. Evaluating the framework’s performance with accurate measurements is the subject of Chapter 6.

4.1 Rearchitecturing the Codemodel-Ri�e Framework 29

AsgNode stores its properties in a HashMap, and its labels and relations in two separate List
members. An AsgRelation has a fromNode, a toNode, and a relationshipLabelmem-
ber. Storing relationship properties was omitted, since the Codemodel-Rifle framework
semantics does not contain relationship properties.

Identifying nodes is achieved with a universally unique identifier (UUID), instead of the
earlier approach of using Neo4j’s discouraged id() function to get the nodes’ built-in
identifier. Each AsgNode object has an id member, which contains a value generated
using the java.util.UUID package. The idmember gets automatically translated into
the property graph as well as all other properties. With a mapping layer like the above, it is
possible to customise the procedure of storing themodel in the database e.g. by optimising
query granularity.

The Cypher Query Builder

Amainbottleneck identifiedwith theImpermanentGraphDatabase instanceof theEmbeddedTestkitDriver
interface was the speed of parsing queries. The example presented in Table 4.1 requires
201 property graph nodes and 340 relationships to be created, so it normally requires 541
distinct Cypher queries to be run. As per my experience of manually performed testing, if
several distinct queries are merged into one, it increases speed significantly. Accordingly,
it was a reasonable step to implement a configurable, specialised query builder, which
manages storing the property graph model with a coarser query-granularity (by creating
more than one nodes or setting more than one relationships within one executed database
query).

The query builder I implemented is capable of creating Cypher queries specially for the
aforementioned OGM layer, following its internal configuration of howmany node creator
queries and howmany relation setter queries should be merged (compressed) into one.
The builder assembles and prepares the queries, and then returns them in a list. Each
database query in the list is ready to be executed without further modifications.

Refactoring the Core Logic to Utilise the OGM and the Query Builder

After implementing and testing the mapping layer and the query builder, I modified the
core import logic of the framework in the ASTScopeProcessor class to utilise the new
components. Instead of immediately storing the translated ASGmodel as a property graph
model in the database, the processor first stores the property graph model in Java objects
with my custom OGM layer. Then, benefiting from the query builder, the model is sent to
the database in optimally sized chunks following the query builder’s configuration.

Table 4.2 shows the optimal configuration values of the query builder in testing environ-
ment (with the EmbeddedTestkitDriver), and in a prospective production environment
(with the official Neo4j driver) for test cases run on my computer.

4.1 Rearchitecturing the Codemodel-Ri�e Framework 30

testing production

nodes created in one query 16 20
relationships set in one query 1 2

Table 4.2 Optimal configuration of the query builder for my computer

Results of Speed-Related Refactorings

Table 4.3 shows a comparison between the speed of two versions of the framework when
importing the exportermodule of the running example, presented in Figure 2.5. Both
versions presented here use the in-memory driver-accessed database, but the first does
not use the optimisations implemented (the mapping layer and the query builder), while
the second one does.

without optimisations with optimisations

importing, transforming, storing 14,816 ms 7,031 ms
visualization 2,456 ms 2,432 ms

total 17,272 ms 9,463 ms

Table 4.3 Speed comparison with and without optimisations1

4.1.5 Other Performances

After the refactoring, the framework’s package structure got very complex. Several main
features of the software — like source code parsing and other actions to be exposed onto
the external interface for user interactions — were mixed with internal operations like
database management and utilities. I separated the packages this way: actions contains
features to be exposed to the user, database contains database-related operations, tasks
contains internal features not to be exposed, and utils contains utilities.

The final version of Dániel Stein’s framework used the v2.2.0 version of Shape Security’s
Shift parser and scope analyser. This version only supports the 6th Version of ECMAScript.
Since then, version es2016-v1.1.1 supporting the full ES7 specification was released by
Shape Security [54, 74]. I updated the framework’s dependencies to use the new version of
the parser and scope analyser.

1These measurements are only for demonstrating that the framework became notably faster after the
speed-related refactorings. They are not aimed to be fully accurate and complete. Evaluating the framework’s
performance with accurate measurements is the subject of Chapter 6.

4.1 Rearchitecturing the Codemodel-Ri�e Framework 31

4.1.6 Summary of Refactoring

Figure 4.2 presents a high-level overview of the refactored architecture of the Codemodel-
Rifle framework. Besides becoming modular, the framework has gone through a series of
optimisations to simplify testing and developing new analyses.

Figure 4.2 The new architecture of Codemodel-Rifle with my contributions emphasised

4.2 In Development: Steps of Building New Analyses 32

4.2 In Development: Steps of Building New Analyses

Building new analyses for software defects basically consists of three steps. The steps are
detailed in the following subsections.

4.2.1 Visualising the Defect with Codemodel-Visualisation

Without seeing what to search for, new analyses can not be implemented. A defect’s
signature has to be inspected with Codemodel-Rifle’s semantics first. For visualising a
defect pattern, a new unit test has to be created in the Codemodel-Visualization project.
The JavaScript modules containing the defect should be included as test resources.

UsingCodemodel-Rifle as adependency, Codemodel-Visualizationfirst parses the JavaScript
files given as test resources and translates them to separate property graphs. If more than
one source files were imported, their graphs are interconnected along the export and im-
port semantics of ECMAScript.1 Finally, the full property graph model gets exported into a
visual file format, like PDF or PNG. The export format is configurable in the unit test.

4.2.2 Describing the Defect Pattern

Thefile exportedbyCodemodel-Visualizationpreciselymirrors theproperty graph instance
model translated by Codemodel-Rifle, but some nodes and edges are not displayed to
preserve the transparency of the visualised graph.2 Any pattern seen in the visualised graph
can be directly matched by Codemodel-Rifle.

4.2.3 Implementing the Analysis

Analyses are basically Cypher queries. If a defect’s pattern can be expressed with a Cypher
query, it can be detected by the framework.

Some defects aremore high-level ormore general than to present their patterns in an intact
graph directly. Detecting complex errors like these may require to extensively manipulate
the graph to dredge defect patterns for matching. In cases involving transitive defects, like
in the running example3 presented in Chapter 2, a flag like EqualsZero has to be propa-
gated through the graph along specified edges: variable assignments, variable references,
function call and function return statements, etc.

1The process of interconnecting ECMAScript modules along export and import statements is one of the
key subjects of this thesis. It will be detailed in Chapter 5.

2Ignored nodes and edges are listed in the GraphWalker class as filtered entities from the underlying
visitor pattern implementation. As an earlier architectural decision, this is not configurable externally.

3The running example is to detect a division by zero scenario. But zero is not a numeric literal 0, but the
indirectly referenced return value of a nested function stack with variable assignments and also a module
boundary in between.

4.3 In Production: Steps of Operating Live 33

Transitive graph manipulations can be achieved by introducing qualifiers into the analysis.
The concept of qualifiers will be described in detail in Chapter 5.

If an analysis matches the specified pattern, it returns the following:

• amessage to explain the type of the defect for a human reader,
• an entity name (or an empty string) to identify defects bound to named entities like
variables and functions,

• the path of the containing module,
• the line in which the defect was found,
• the column of the line at which the defect begins.

In my current implementation, the above items are uniformly1 returned from the database
as elements of a Neo4j Record, and they are handed over to a central logger to be immedi-
ately printed after minimal formatting. This is not a flexible solution; in the future, this
basic defect processing logic should be refined. The found defects could be returned as
JSON objects from the database to be easily parsed into a Java class named Defect. They
could also be collected into a per-analysis data structure. This way, the framework could
display defects found at an analysis according to various aspects and criteria, and it could
also produce machine-readable output. With a clean API, this would allow the framework
to be embedded into other software.

4.3 In Production: Steps of Operating Live

The prospective live operation of the framework basically consists of three steps, which are
managed by the framework. Ideally, the operation should be automatic and transparent:
if a change is done in the IDE, or a new commit is pushed to the central repository, the
framework should perform analyses over the changed code repository. The steps of a full
analysis procedure are detailed in the following subsections.

4.3.1 Import: Synchronising the Repository into the Framework

First, the code repository is imported into the framework. This involves listing and parsing
all files with configured extensions (currently only .js), then saving the created property
graph models into the database.

The word synchronising expresses that Codemodel-Rifle aims to be incremental; but while
it does so, its capabilities are still very limited. According to plans, the framework will
cooperate with VCSs to detect changes, thus it will be able to import only those files that
changed since the last import process.

1Exactly these items are returned in all cases, regardless of the defect’s type. This is not flexible, since an
unreachable code defect may require other arguments to be logged, than a non-initialised variable defect.

4.3 In Production: Steps of Operating Live 34

4.3.2 Interconnect: Connecting the Related ECMAScript Modules

To evaluate analyses over more than one ECMAScript modules, the related modules’
separate property graphs are interconnected along the export and import semantics of
ECMAScript. This process is described in detail in Chapter 5.

4.3.3 Analyse: Performing Analyses

Performing analyses can be broken down into two substeps.

Manipulating the Graph

Complex analyses may require to extensively manipulate the graph. These manipulations
involving qualifiers are processed first.

Querying the Graph

The graph is queried with Cypher, with matching predefined graph patterns developed
with the aforementioned steps. If a defect pattern matches, it gets logged onto the console
with the semantics described in Section 4.2.3, in the format seen in Figure 4.3.

message: entityname at line:column in path

Figure 4.3 The framework’s console output if a defect was found

35

Chapter 5

Elaboration of the Work�ow

This chapter details the implementation of the analyses and the additional proceedings
about analysing more than one ECMAScript modules coherently. Thus, this chapter en-
compasses all semantic changes of the framework.

Following Dániel Stein [7] and Chapter 4 of this thesis, a full analysis procedure of the
Codemodel-Rifle framework can be broken down to three distinct phases:

1. IMPORT:EveryECMAScript sourcefile (containing the source codeof oneECMAScript
module) of the analysed code repository is imported into Codemodel-Rifle. The
modules are translated to Abstract Semantic Graph models. The ASGs are stored as
distinct, per-module property graphs in the underlying Neo4j graph database.

2. INTERCONNECT: The related modules’ separate graphs are interconnected along
the export and import semantics of ECMAScript. This makes possible to evaluate
analyses over more than one modules coherently.

3. ANALYSE: The predefined analyses are executed.
a) The graph manipulations of the Qualifier System are performed.
b) The defect patterns are matched.

Since I have not made any semantic changes to the IMPORT phase, this chapter focuses to
the INTERCONNECT and the ANALYSE phases.

5.1 Interconnecting Related ECMAScript Modules

This section describes the work I made to support analysing more than one ECMAScript
modules coherently. The approach follows [7], and completes it by developing the seman-
tics of missing use cases, and then implementing them. To shortly summarise: in order to
coherently analyse several related ECMAScript modules with the Codemodel-Rifle frame-
work, the related modules’ separate property graphs are interconnected by well-defined

5.1 Interconnecting Related ECMAScript Modules 36

rules. As previously already mentioned, these rules are built upon the export and import
semantics of ECMAScript [75]. Equivalently, ECMAScript modules are considered to be
related, if they refer to each other by using export and import statements.

5.1.1 The ECMAScript Module System

As the language gained traction, JavaScript projects rapidly grown to a size where mod-
ularisation became critical in order to keep the code logically organised. Today’s largest
ECMAScript code bases include Google’s Gmail1 with approx. 400,000 lines of code [76],
Ruben Daniels’ Cloud9 IDE2 with approx. 300,000 lines of code [77], and Lucidchart3 with
approx. 200,000 lines of code [78]. The product of Tresorit featured in this thesis consists
of approx. 35,000 lines of ECMAScript code.

Plain JavaScript does not have built-in support for modules [75], there are only community-
provided solutions like RequireJS4. In contrary, the 6th version of ECMAScript has language-
level support for modules: each source file represents exactly one module. Entities like
variables and functions defined in one module, or even complete modules themselves can
be exported to be imported to a different module. By default, modules are referred by their
relative pathname, without the containing file’s extension. Entities that are not explicitly
exported remain private, meaning they can not be imported to other modules.

In ECMAScript 6, there are several ways of exporting and importing entities [75], these
are detailed in the next subsections. The Codemodel-Rifle framework had only minimal
demonstrative support for interconnecting several ECMAScriptmodules; I extendedDániel
Stein’s work by covering the most used export-import case combinations.

5.1.2 Export Syntaxes and Cases

By default, each entity can only be accessed in the scope of the module it was declared in.
To be accessed in other modules, the entity has to be explicitly exported first. Figure 5.1
presents export syntax examples of ECMAScript 6, based on [79]. Since these statements
can be almost arbitrarily combined, and the number of exported variables is not limited in
theory, the list of differing export syntaxes of ECMAScript 6 is practically endless.

Therefore, export syntaxes need to be distinguished from export cases. An export case is
identified by the basic form of an export syntax. An export syntax written in basic form does
not combine diverse syntaxes, and exports only one entity per export statement. Figure 5.1
displays all syntaxes in basic form, thus it lists all members of the distinct export cases’ finite
set. Each different export case has a unique graph pattern in the ASG.

1https://www.gmail.com
2https://c9.io
3https://www.lucidchart.com
4http://requirejs.org

5.1 Interconnecting Related ECMAScript Modules 37

// exportName
export { name1, ... };
// exportDefaultName
export default name1;
// exportAlias
export { name1 as exportedName1, ... };
// exportAsDefault
export { name1 as default, ... };
// exportEmptyLetDeclaration
export let name1, ... ;
// exportEmptyVarDeclaration
export var name1, ... ;
// exportLetDeclaration
export let name1 = ..., ... ;
// exportVarDeclaration
export var name1 = ..., ... ;
// exportConstDeclaration
export const name1 = ..., ... ;
// exportClass
export class name1 { ... }
// exportFunction
export function name1(...) { ... }
// exportGenerator
export function* name1(...) { ... }
// exportDefaultClass
export default class name1 { ... }
// exportDefaultFunction
export default function name1(...) { ... }
// exportDefaultGenerator
export default function* name1(...) { ... }
// exportDefaultExpression
export default expression;
// exportDefaultAnonymousClass
export default class { ... }
// exportDefaultAnonymousFunction
export default function (...) { ... }
// exportDefaultAnonymousGenerator
export default function* (...) { ... }
// exportExpression
export expression;
// reexportNamespace
export * from ...;
// reexportName
export { name1, ... } from ... ;
// reexportAlias
export { import1 as importedName1, ... } from ...;

Figure 5.1 Export syntax examples of ECMAScript 6

5.1 Interconnecting Related ECMAScript Modules 38

5.1.3 Import Syntaxes and Cases

An entity declared in module A can be accessed in module B, if A exports, and B imports
the entity. All exported entities of a module can be imported as well: in this case an object
is created with the name of the imported module’s alias, and with members listing the
exported entities of the imported module. Figure 5.2 present import syntax examples of
ECMAScript 6, based on [80]. Like the exports, these statements can also be combined
with each other, making the list of the possible import syntax combinations endless.

Thus, import syntaxes need to be distinguished from import cases, similarly to the exports.
An import case is identified by the basic form of an import syntax. Figure 5.2 displays all
syntaxes in basic form. Each different import case has a unique graph pattern in the ASG.

// importName
import { name1, ... } from "exporter";
// importAlias
import { name1 as importedName1, ... } from "exporter";
// importDefault
import defaultName from "exporter";
// importNamespace
import * as exportedModule from "exporter";
// importModule
import "exporter";

Figure 5.2 Import syntax examples of ECMAScript 6

5.1.4 Number of Export-Import Combinations

Let E be set of all the distinct export cases, and let I be the set of all the distinct import
cases. As Figure 5.1 and Figure 5.2 show, |E| = 23, and |I| = 5. If all export cases would be
compatible with all import cases according to the ECMAScript grammar, set C containing
all combinations would be C= E× Iwith the cardinality of |C| = |E|∗ |I| = 23∗5 = 115.

// exporter.js
export let name1 = ...;
// importer.js
import defaultName from "exporter";

Figure 5.3 An example of incompatible export-import cases

Let S be the set of the export-import combinations supported by Codemodel-Rifle, and let
α be the number of distinct algorithms needed to be implemented for supporting every

5.1 Interconnecting Related ECMAScript Modules 39

element of S. The following applies: α ≤ |S|, since the framework needs one separate
algorithm for each export-import case at most. As not all export cases are compatible with
all import cases (a counterexample is displayed on Figure 5.3), the set of semantically valid
export-import combinations is narrower than C. Codemodel-Rifle should interconnect
only semantically valid export-import cases, so S⊂C. Also, α can be reduced further by
involving ASG-specific knowledge: with graph pattern generalisation techniques, several
export cases can be handled as one at implementing the interconnections, while pre-
serving semantics. Therefore several export cases can be covered by one algorithm, so
α< |S|. In addition, by choosing particular export and import cases not to be supported by
Codemodel-Rifle, α can be lowered even further. Case compatibility, unsupported cases
and pattern generalisation techniques are detailed in the following subsections.

5.1.5 Compatibility of the Export-Import Cases

An export-import combination is considered to be semantically valid, if it complieswith the
ECMAScript grammar [81, 82]. Accordingly, semantically valid export-import combinations
consist of compatible export-import cases: export case E and import case I are considered
to be compatible with each other, if the entity exported by E can be imported by I, following
the ECMAScript grammar. Figure 5.3 shows an example of incompatible export-import
cases. Table 5.1 displays a compatibility matrix for ECMAScript export-import cases.

As only semantically valid export-import combinations are required to be supported by
Codemodel-Rifle to evaluate analyses over several ECMAScript modules coherently, in-
compatible cases do not need to be covered. This reduces α from 115 to 84 (see Table 5.1).

5.1.6 Unsupported Cases

There are export and import cases which I chose not be supported by Codemodel-Rifle
because of implementation difficulties, or the cases’ irrelevant usage. This reduces α from
84 to 33. The unsupported export and import cases are the following:

• exportDefaultExpression, exportDefaultAnonymousClass, export- DefaultAnonymousFunction,
exportDefaultAnonymousGenerator: There is no clear way for interconnecting the
exported entities with the importer module.

• exportExpression: Unnamed expressions (e.g. export 1 + 2;) can not be im-
ported, because they can not be referenced.

• reexportName, reexportAlias, reexportNamespace: According tomy experiences,
re-exporting is used very little.

• importNamespace: There is no clear solution for including all exported variable of
the imported module as an object into the ASG.

• importModule: It only loads the module, does not import anything. The first such
import in a program executes the body of the module [75].

5.1 Interconnecting Related ECMAScript Modules 40

Table 5.1 displays the unsupported export and import cases with grey background. With
excluding the incompatible and the unsupported cases from the interconnection process,
α is reduced by more than 71%, from 115 to 33. This saves a significant amount of work
without notable loss of the analyses’ credibility — unsupported cases were mostly chosen
because of their unpopularity. Nevertheless, these cases need to be covered later as well.

im
po

rtN
am

e

im
po

rtA
lia

s

im
po

rtD
ef
au

lt

im
po

rtN
am

es
pa

ce

im
po

rtM
od

ul
e

exportName
exportDefaultName
exportAlias
exportAsDefault
exportEmptyLetDeclaration
exportEmptyVarDeclaration
exportLetDeclaration
exportVarDeclaration
exportConstDeclaration
exportClass
exportFunction
exportGenerator
exportDefaultClass
exportDefaultFunction
exportDefaultGenerator
exportDefaultExpression
exportDefaultAnonymousClass
exportDefaultAnonymousFunction
exportDefaultAnonymousGenerator
exportExpression
reexportName
reexportAlias
reexportNamespace

Table 5.1 Export-import compatibility matrix with unsupported cases in grey

5.1 Interconnecting Related ECMAScript Modules 41

5.1.7 Pattern Generalisation Techniques

After excluding the incompatible and the unsupported cases, 33 different import-export
combinations still need to be covered by the interconnection process. This would imply
that α= 33 algorithms are needed for all combinations, but α can be reduced further by
involving ASG-specific knowledge. At interconnectingmodules, several export cases’ graph
patterns can be matched by one, generalised pattern description, and thus several export
cases can be interconnected with the same algorithm. For import cases, generalisation is
neither possible nor necessary, since only three, semantically different import cases are
supported by Codemodel-Rifle. To proceed, two concepts are defined.

Semantically correct interconnection An export-import interconnection between two
modules’ property graphs is semantically correct to Codemodel-Rifle, if the interconnec-
tion is reversible, it correlates with the semantics of ECMAScript, and the interconnected
property graphs contain the same information as the separate property graphs.

Isomorphic export case Two export cases are isomorphic, if they contain ASG patterns
which can be interconnected to an import case along the same nodes and edges, applying
the same algorithm, and the interconnection is semantically correct.

Applying the two definitions, my workflow was the following for finding the isomorphic
export cases in order to reduce α:

1. I inspected the similar export cases’ ASG patterns, whether they can be described by
one, generalised graph pattern description.

2. If yes, I examined if the two export cases can be interconnected with import cases
along the same nodes and edges, with the same algorithm.

3. If yes, I performed the interconnections, and inspected them whether they are se-
mantically correct.

4. If yes, the two export cases are isomorphic.

Figure 5.4 presents two distinct ASGs of two isomorphic export cases as an example. These
two cases are described below with also specifying their location on the figure:

• ON THE LEFT: export let name1 = "name1Value"
• ON THE RIGHT: export function name1() { return "name1Value"; }

The two export cases are isomorphic because of the following.

a) The two graphs contain patterns which can be matched by one pattern description.
Even though these patterns (indicated with thicker outlines) contain nodes and
edges with different labels and properties, in Neo4j it is possible to match both of
them with only one Cypher expression.

5.1 Interconnecting Related ECMAScript Modules 42

b) Both patterns can be interconnected to an import along the same nodes and edges
applying the same algorithm. Applying the semantics of Codemodel-Rifle developed
along practical reasons, only the node labeled as Declaration (indicated with blue
filling) needs to be connected to the import module’s ASG in both cases.

c) The interconnection is semantically correct. In both cases, the interconnection is
reversible, and no information is lost. The interconnection also correlates with the
semantics of ECMAScript: in both cases, it expresses that a named declaration has
been imported from another module. For the aim of the Codemodel-Rifle frame-
work—which is revealing possible errors in software by static analysis — this is a
satisfactory way of implementing the interconnections.

AsgNode
BindingIdentifier

Binding
VariableReference

'name' = 'name1' : String
'session' = 'test' : String

AsgNode
Module
Program

'session' = 'test' : String

AsgNode
Export

ExportDeclaration
'session' = 'test' : String

items

AsgNode
VariableDeclaration

Node
FunctionDeclarationClassDeclarationVariableDeclaration

VariableDeclarationAssignmentTarget
VariableDeclarationExpression

'session' = 'test' : String
'kind' = 'let' : String

declaration

AsgNode
Map

'session' = 'test' : String

AsgNode
Variable

'name' = 'name1' : String
'session' = 'test' : String

name1

AsgNode
Declaration

'session' = 'test' : String
'kind' = 'Let' : String

declarations

AsgNode
Reference

'accessibility' = 'Write' : String
'session' = 'test' : String

references

AsgNode
Node

VariableDeclarator
'session' = 'test' : String

declarators

AsgNode
GlobalScope

Scope
'type' = 'Global' : String
'session' = 'test' : String
'dynamic' = true : boolean

astNode

AsgNode
Scope

'type' = 'Module' : String
'session' = 'test' : String
'dynamic' = false : boolean

children

astNode variables

node node

AsgNode
LiteralStringExpression

Expression
'value' = 'name1Value' : String
'session' = 'test' : String

bindinginit

AsgNode
Node

FormalParameters
'session' = 'test' : String

AsgNode
GlobalScope

Scope
'type' = 'Global' : String
'session' = 'test' : String
'dynamic' = true : boolean

AsgNode
Scope

'type' = 'Module' : String
'session' = 'test' : String
'dynamic' = false : boolean

children

AsgNode
Module
Program

'session' = 'test' : String

astNode

astNode

AsgNode
Map

'session' = 'test' : String

variables

AsgNode
Scope

'type' = 'Function' : String
'session' = 'test' : String
'dynamic' = false : boolean

children

AsgNode
Export

ExportDeclaration
'session' = 'test' : String

items

AsgNode
BindingIdentifier

Binding
VariableReference

'name' = 'name1' : String
'session' = 'test' : String

AsgNode
Variable

'name' = 'name1' : String
'session' = 'test' : String

name1

AsgNode
Declaration

'kind' = 'FunctionDeclaration' : String
'session' = 'test' : String

declarations

AsgNode
Node

FunctionBody
FunctionBodyExpression
'session' = 'test' : String

AsgNode
Statement

ReturnStatement
'session' = 'test' : String

statements

AsgNode
LiteralStringExpression

Expression
'value' = 'name1Value' : String
'session' = 'test' : String

expression

node

AsgNode
FunctionDeclarationClassDeclarationVariableDeclaration

FunctionDeclaration
Statement

FunctionDeclarationClassDeclarationExpression
Function

'session' = 'test' : String
'isGenerator' = false : boolean

declaration

AsgNode
Map

'session' = 'test' : String

AsgNode
Variable

'name' = 'arguments' : String
'session' = 'test' : String

arguments

paramsname body

variables

astNode

Figure 5.4 Two isomorphic export cases contain the same pattern

5.1 Interconnecting Related ECMAScript Modules 43

The process of pattern generalisation needs to be performed carefully. The generalised
patterns must match only those export cases’ patterns that can be interconnected with
imports in a semantically correct way. If the patterns are too broadly generalised, they will
match more export cases than intended, resulting semantically incorrect interconnections
(between incompatible export-import cases). In contrary, if they are too narrowly specified,
they will match only one export case, resulting no reduction of α.

In the following, I list all export cases I found to be isomorphic in groups. Each group’s
name implies why the elements are isomorphic in the group. Since every element can be
interconnected with imports using the same algorithm per group, an isomorphic group
with its elements can be considered as one generalised export case regarding the ASG
interconnection process of the Codemodel-Rifle framework. The following 5 isomorphic
export groups have been formed:

• exportName

– exportName

• exportDefaultName

– exportDefaultName

• exportAlias

– exportAlias
– exportAsDefault

• exportDeclaration

– exportEmptyLetDeclaration
– exportEmptyVarDeclaration
– exportLetDeclaration
– exportVarDeclaration
– exportConstDeclaration
– exportClass
– exportFunction
– exportGenerator

• exportDefaultDeclaration

– exportDefaultClass
– exportDefaultFunction
– exportDefaultGenerator

Based on the above, having 5 isomorphic export groupsmeans that the number of distinctly
handled export cases has been reduced to 5. Table 5.2 shows the updated compatibility
table with export cases grouped by their isomorphism, without listing the unsupported
cases. By this time, with excluding incompatible and unsupported cases, and applying
pattern generalisation techniques, α has been reduced to 13, meaning only 13 separate
algorithms have to be implemented in order to cover most of the export-import cases.

5.1 Interconnecting Related ECMAScript Modules 44

im
po

rtN
am

e

im
po

rtA
lia

s

im
po

rtD
ef
au

lt

exportName
exportDefaultName
exportAlias
exportDeclaration
exportDefaultDeclaration

Table 5.2 Export-import compatibilitymatrix with exports grouped by their isomorphism

5.1.8 Implementing the Interconnection Algorithms

After thoroughly inspecting the ASG signatures of the numerous export and import cases
for minimising the number of algorithms to be implemented, actually implementing the
algorithms was straightforward. In this section, I will not present all combinations in
detail. Instead, I describe the general steps of the interconnection process, and I provide
a complete example with one concrete combination. In the Appendix, all export-import
case combinations are listed with their interconnection algorithms.

The steps of the interconnection process in general can be described as follows:

1. Match each to-be-exported entities of the exporter module with strictly unique
patterns containing all necessary identifiers and information for the export.

2. Match each to-be-imported entities of the importer module with strictly unique
patterns containing all necessary identifiers and information for the import.

3. Perform interconnections between the exporter module and the importer module
by finding corresponding entities in the twomodules based on identifiers like names
and/or default export/import bindings.

4. Clean the graph, so it will not contain duplicate nodes or edges after the intercon-
nection process.

// exporter.js
let name1 = "name1Value";
export { name1 };

// importer.js
import { name1 as importedName1 } from "exporter";

Figure 5.5 Modules for demonstrating the exportName–importAlias combination

5.1 Interconnecting Related ECMAScript Modules 45

I chose the fully detailed combination to be the exportName–importAlias. The exportName
case is in the exportermodule, the importAlias case is in the importermodule. Figure 5.5
shows the source code of the two modules.

Figure 5.6 displays the process of interconnecting the exportermodule’s graph with the
importermodule’s graph along the exportName–importAlias case combination. The fol-
lowing steps are performed on the ASGs of the modules:

1. Find the exported Variable with its Declaration in the exportermodule marked
with blue colour. The full matched pattern is indicated with thicker outlines.

2. Find the imported Variablewith its BindingIdentifier and its Declaration in the
importermodulemarkedwith crimson colour. The fullmatched pattern is indicated
with thicker outlines.

3. Check if the Import node’s moduleSpecifier attribute is equal to the exporter mod-
ule’s name, which is currently exporter.

4. Check if the name attribute of the IdentifierExpression node (connecting to the
ExportLocalSpecifier node) is equal to the ImportSpecifier node’s name attribute.
In this particular importAlias case, checking ImportSpecifier node’s name attribute
instead of the imported Variable node’s name attribute provides the support for the
aliased import.

5. Create a declarations edge from the imported Variable node to the exported
Declaration. This is indicated with a thick black outline.

6. Create a node edge from the exported Declaration node to the imported variable’s
BindingIdentifier node. This is indicated with a thick black outline.

7. Delete the original Declarationnode of the imported variablewith its edges.1 These
are indicated with dashed outlines.

These steps are translated to Cypher, and sent to the database. Each export-import combi-
nation featured in Table 5.2 has a separate Cypher query. As these export-import intercon-
nection queries are independent from each other — they do not modify the others’ results
in any way— they can be executed in any order. The queries are also idempotent : they can
be re-executed arbitrarily many times without different outcomes on the same dataset.

Figure 5.7 presents the full Cypher query of the exportName–importAlias combination.
The query contains a node with a label that is not displayed in the visualised graph:
CompilationUnit. At translating the modules into ASGs, Codemodel-Rifle creates a node
with the label CompilationUnit for each distinct source file. Eachmodule’s all graph nodes
are connected to the module’s CompilationUnit node. The node also stores information
about the parsed module’s file path. As displaying the CompilationUnit nodes with all
their connections would make the graph very dense, they are omitted.

1This step does not cause loss of information: the graph still contains the information that the variable
was imported.

5.1 Interconnecting Related ECMAScript Modules 46

AsgNode
BindingIdentifier

Binding
VariableReference

'name' = 'name1' : String
'session' = 'test' : String

AsgNode
ExportLocalSpecifier

Node
'session' = 'test' : String

AsgNode
VariableReference
IdentifierExpression

Expression
'name' = 'name1' : String
'session' = 'test' : String

name

AsgNode
GlobalScope

Scope
'type' = 'Global' : String
'session' = 'test' : String
'dynamic' = true : boolean

AsgNode
Module
Program

'session' = 'test' : String

astNode

AsgNode
Scope

'type' = 'Module' : String
'session' = 'test' : String
'dynamic' = false : boolean

children

AsgNode
ExportLocals

ExportDeclaration
'session' = 'test' : String

items

AsgNode
VariableDeclarationStatement

Statement
'session' = 'test' : String

items

astNode

AsgNode
Map

'session' = 'test' : String

variables

namedExports

AsgNode
Variable

'name' = 'name1' : String
'session' = 'test' : String

name1

AsgNode
Reference

'accessibility' = 'Write' : String
'session' = 'test' : String

node

AsgNode
Node

VariableDeclaration
FunctionDeclarationClassDeclarationVariableDeclaration

VariableDeclarationAssignmentTarget
VariableDeclarationExpression

'session' = 'test' : String
'kind' = 'var' : String

declaration

AsgNode
Node

VariableDeclarator
'session' = 'test' : String

declarators

binding

AsgNode
Expression

LiteralStringExpression
'value' = 'name1Value' : String
'session' = 'test' : String

init

references

AsgNode
Reference

'session' = 'test' : String
'accessibility' = 'Read' : String

references

AsgNode
Declaration

'session' = 'test' : String
'kind' = 'Var' : String

declarations

node

node

AsgNode
BindingIdentifier

Binding
VariableReference

'name' = 'importedName1' : String
'session' = 'test' : String

node

AsgNode
Scope

'type' = 'Module' : String
'session' = 'test' : String
'dynamic' = false : boolean

AsgNode
Module
Program

'session' = 'test' : String

astNode

AsgNode
Map

'session' = 'test' : String

variables

AsgNode
Import

ImportDeclaration
'moduleSpecifier' = 'exporter' : String
'session' = 'test' : String

items

AsgNode
Variable

'name' = 'importedName1' : String
'session' = 'test' : String

importedName1

AsgNode
Node

ImportSpecifier
'name' = 'name1' : String
'session' = 'test' : String

namedImports

binding

AsgNode
Declaration

'kind' = 'Import' : String
'session' = 'test' : String

node

declarations declarations

AsgNode
GlobalScope

Scope
'type' = 'Global' : String
'session' = 'test' : String
'dynamic' = true : boolean

children

astNode

Figure 5.6 Interconnecting theexportermodulewith the importermodule in the export-
import combination exportName–importAlias

5.1 Interconnecting Related ECMAScript Modules 47

MATCH
// exporter.js: let name1 = "name1Value"; export { name1 };

(exporter:CompilationUnit)-[:contains]->(:ExportLocals)
-[:namedExports]->(:ExportLocalSpecifier)
-[:name]->(exportBindingIdentifier:IdentifierExpression)
<-[:node]-(:Reference)
<-[:references]-(:Variable)
-[:declarations]->(declarationToMerge:Declaration)
-[:node]->(:BindingIdentifier),

// importer.js: import { name1 as importedName1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportBindingIdentifier.name = importSpecifier.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

Figure 5.7 The Cypher query interconnecting the exportName–importAlias combination

5.2 Simple Analyses by Pattern Matching 48

5.2 Simple Analyses by Pattern Matching

In the Codemodel-Rifle framework, analyses are basically Cypher queries. If a defect’s
pattern in the Abstract Semantic Graph can be expressed with a Cypher query, it can
be detected by the framework. This section details those analyses I implemented for
Codemodel-Rifle, which use only pattern matching and do not require to alter the graph.

I developed the analyses by the process I presented in Section 4.2. After visualising the
defect’s pattern with Codemodel-Visualization, I created the description of the defect by
implementing a Cypher query for matching its pattern in the ASGmodel. The results of the
analyses are returned as strings containing defect properties, as described in Section 4.2.3.

5.2.1 Uninitialised Variables

Avariable is uninitialised if it was declaredbut hadno value assigned. Inmost programming
languages, uninitialised variables do have some value, but it is usually unpredictable
memory garbage originating from prior values stored at the variable’s memory location.

Contrarily in JavaScript, uninitialised variables do not contain randommemory garbage.
A method or statement evaluating a variable that has not been assigned a value returns
undefined; a primitive value and also a primitive type of JavaScript. Uninitialised variables
are of type undefinedwith the value undefined. Per se, uninitialised variables are not defects,
but if an uninitialised variable is used without checking whether it is undefined, it can break
code execution in severalways: e.g.making the result of the evaluating expressionundefined
too, or throwing a ReferenceError.

AsgNode
Declaration

'session' = 'test' : String
'kind' = 'Let' : String

AsgNode
BindingIdentifier

Binding
VariableReference

'session' = 'test' : String
'name' = 'foo' : String

node

AsgNode
Reference

'accessibility' = 'Write' : String
'session' = 'test' : String

node

AsgNode
Variable

'session' = 'test' : String
'name' = 'foo' : String

declarations references

AsgNode
VariableDeclaration

Node
FunctionDeclarationClassDeclarationVariableDeclaration

VariableDeclarationAssignmentTarget
VariableDeclarationExpression

'session' = 'test' : String
'kind' = 'let' : String

AsgNode
Node

VariableDeclarator
'session' = 'test' : String

declarators

binding

AsgNode
LiteralStringExpression

Expression
'session' = 'test' : String
'value' = 'bar' : String

init

AsgNode
VariableDeclarationStatement

Statement
'session' = 'test' : String

declaration

Figure 5.8 Matching the nonInitialisedVariable analysis pattern

5.2 Simple Analyses by Pattern Matching 49

Regarding uninitialised variables, my analysis in Codemodel-Rifle reports if a variable was
not explicitly initialised with an assignment expression.1 ASG-semantically, this means
verifying that the variable’s VariableDeclaratornode has no init relationship. Figure 5.8
presents a partial ASG demonstrating how an uninitialised variable is revealed. The nodes
and edges with thicker outlines are members of the pattern matching expression, the
dashed outlines represent entities being checked for existence. The source code of the
analysis is available in the Appendix.

5.2.2 Globally Unused Exports

The ECMAScript module system provides a practical solution for keeping code bases
organised: logically separated, but practically cooperating software components can be
implemented. Exporting only particular entities from a module allows to hide several
sensitive information from the outside, such as internal functionality and implementation
details, or even security-related specialities. Thus, a best practice is to only export what is
explicitly intended to be public, and keep everything else private.

My analysis for detecting unused exports report if an entity is exported, but never imported
to any othermodule. It is based on the semantics of themodule interconnections described
in Section 5.1.

Figure 5.9 presents a partial ASG demonstrating how an unused export is revealed. The
exporter module’s graph is indicated with blue colour, the importer module’s graph is
indicated with crimson colour. The nodes and edges with thicker outlines are members of
the pattern matching expression, the dashed outlines represent entities being checked for
existence. The source code of the analysis is available in the Appendix.

AsgNode
VariableDeclaration

Node
FunctionDeclarationClassDeclarationVariableDeclaration

VariableDeclarationAssignmentTarget
VariableDeclarationExpression

'session' = 'test' : String
'kind' = 'let' : String

AsgNode
Node

VariableDeclarator
'session' = 'test' : String

declarators

AsgNode
VariableReference
BindingIdentifier

Binding
'session' = 'test' : String
'name' = 'foo' : String

binding

AsgNode
Expression

LiteralNumericExpression
'value' = 5.0 : double
'session' = 'test' : String

init

AsgNode
IdentifierExpression

Expression
VariableReference

'session' = 'test' : String
'name' = 'foo' : String

AsgNode
Declaration

'session' = 'test' : String
'kind' = 'Let' : String

AsgNode
VariableReference
BindingIdentifier

Binding
'session' = 'test' : String
'name' = 'foo' : String

nodenode

AsgNode
ExportLocals

ExportDeclaration
'session' = 'test' : String

AsgNode
Node

ExportLocalSpecifier
'session' = 'test' : String

namedExports

name

AsgNode
Reference

'accessibility' = 'Write' : String
'session' = 'test' : String

node

AsgNode
Reference

'session' = 'test' : String
'accessibility' = 'Read' : String

node

AsgNode
Variable

'session' = 'test' : String
'name' = 'foo' : String

declarationsreferences references

AsgNode
Variable

'session' = 'test' : String
'name' = 'foo' : String

declarations

AsgNode
Import

ImportDeclaration
'moduleSpecifier' = 'exporter' : String
'session' = 'test' : String

AsgNode
Node

ImportSpecifier
'session' = 'test' : String

namedImports

binding

Figure 5.9 Matching the unusedExport_exportName analysis pattern

1The analysis only covers unconditional cases, reporting results of conditional value assignments is
currently not supported.

5.2 Simple Analyses by Pattern Matching 50

5.2.3 Division By Zero (restricted)

Division by zero is one of themost basic software defects. JavaScript usually does not throw
an error if it evaluates such expressions, but returns undefined, NaN or Infinity instead,
depending on the environment and the runtime. As stated before, this can break program
execution in several ways.

Detecting a division by zero scenario generally is rather challenging by using only static
tools. As the right-hand operator of a division expression can be a variable, whose value
can be anything — even originate from several other variables —, it needs much more
effort than simple pattern matching. Detecting such transitive division by zero cases is the
subject of the next section, involving the Qualifier System.

However, finding division expressions in the ASG, where the right-hand operator is a
numeric literal with the value zero is not complicated. My analysis for this restricted case
reports such division by zero defects by simple graph pattern matching.

Figure 5.10 presents a partial ASG demonstrating how a division by zero defect is revealed
whenzero is anumeric literal. Thenodes andedgeswith thicker outlines aremembers of the
patternmatching expression, and the‘value’property of theLiteralNumericExpression
is checked if it equals zero.

AsgNode
VariableDeclaration

Node
FunctionDeclarationClassDeclarationVariableDeclaration

VariableDeclarationAssignmentTarget
VariableDeclarationExpression

'session' = 'test' : String
'kind' = 'let' : String

AsgNode
Node

VariableDeclarator
'session' = 'test' : String

declarators

AsgNode
Expression

BinaryExpression
'session' = 'test' : String
'operator' = 'Div' : String

init

AsgNode
BindingIdentifier

Binding
VariableReference

'session' = 'test' : String
'name' = 'foo' : String

binding

AsgNode
LiteralNumericExpression

Expression
'value' = 0.0 : double
'session' = 'test' : String

right

AsgNode
LiteralNumericExpression

Expression
'value' = 5.0 : double
'session' = 'test' : String

left

AsgNode
Declaration

'session' = 'test' : String
'kind' = 'Let' : String

node

AsgNode
VariableDeclarationStatement

Statement
'session' = 'test' : String

declaration

AsgNode
Reference

'accessibility' = 'Write' : String
'session' = 'test' : String

node

AsgNode
Variable

'session' = 'test' : String
'name' = 'foo' : String

declarations references

Figure 5.10 Matching the divisionByZero-literal analysis pattern

5.2 Simple Analyses by Pattern Matching 51

5.2.4 Misuse of Negative Integers as Function Arguments (restricted)

Generally used functions in JavaScript’s Math library do not support complex numbers.
Therefore, if a developer supplies a negative numeric value to a function like Math.sqrt()
or Math.log(), the expressionwill return NaN or undefined, depending on the environment
and the runtime.

My analysis for detecting the misuse of negative integers as function arguments reports if
the argument of a log() or a sqrt() call is a negative numeric literal.1

AsgNode
ExpressionStatement

Statement
'session' = 'test' : String

AsgNode
Expression

CallExpression
'session' = 'test' : String

expression

AsgNode
StaticMemberExpression

MemberExpression
'session' = 'test' : String
'property' = 'sqrt' : String

callee

AsgNode
Expression

UnaryExpression
'operator' = 'Minus' : String
'session' = 'test' : String

arguments

AsgNode
LiteralNumericExpression

Expression
'value' = 5.0 : double
'session' = 'test' : String

AsgNode
Expression

IdentifierExpression
VariableReference

'session' = 'test' : String
'name' = 'Math' : String

object operand

Figure 5.11 Matching the squareRootNegativeArgument-literal analysis pattern

Figure 5.11 presents a partial ASG demonstrating how a square root called with a negative
argument defect is revealed when the argument is a numeric literal. The nodes and edges
with thicker outlines are members of the pattern matching expression. The ‘name’ prop-
erty of the VariableReference connected to the StaticMemberExpression is checked
whether it is Math, the ‘property’ property of the StaticMemberExpression is checked
whether it is sqrt, and the ‘operator’ property of the UnaryExpression connected to
the LiteralNumericExpression is checked whether it is Minus. The source code of the
analysis is available in the Appendix.

1This analysis does not cover transitive cases, where the function argument is a variable. That is the
subject of the next subsection.

5.3 Complex Analyses with the Quali�er System 52

5.3 Complex Analyses with the Quali�er System

Some defects are more general than to present their patterns in an intact graph directly.
Detecting complex errors like these may involve to deduce variable and function return
values, and it may require to manipulate the graph to dredge defect patterns for matching.
Implementing complex analyses for these defects involved the creation of the Qualifier
System, a generic graph constraint propagation strategy for revealing—otherwise generally
unmatchable — transitive defect patterns. This section details the analyses I implemented
for Codemodel-Rifle involving extensive graph manipulations, using the Qualifier System.

5.3.1 Transitive Defects

In this thesis, the term transitive defect is used as follows. A software defect is considered
transitive, if its effect propagates through multiple variable value assignments and/or
function calls. Patterns of transitive defects generally can not be directly matched in the
ASG, because the graph pattern of such defects — spanning an indeterminate number
of functions or variable assignments — can not be described by one general pattern de-
scription. But, patterns of transitive defects can be deduced in the ASG by following their
propagation, and marking the intermediate nodes with constraints.

Demonstratively, the running example presented in Chapter 2 contains a transitive division
by zero defect. In the example’s exportermodule, there is a variable given the value zero,
then the variable is nested into several levels of variable assignments and function return
expressions, finally into the exporter module’s default function export. The exported
function will return zero, too. After the example’s importermodule imports the default
export of exporter, it divides numeric literal 5 with the return value of the imported
function, practically by zero. The defect is transitive in the meaning that the zero is not a
numeric literal 0, which could be revealed easily by simple pattern matching. Instead, that
zero comes from nested variable assignments and functions — it transits along variable
assignments and functions. This transitivity can be deduced by the Qualifier System.

This deduction of values is similar to the approach of data-flow analysis. By propagating
qualifiers in the ASG node-by-node, until the system reaches a fixpoint (where no further
propagation is possible), basically the nodes’ local data-flow equations are solved.

Figure 5.12 presents the propagation of the running example’s transitive division by zero
defect in the exportermodule’s partial ASG. The graph pseudo-nodemarkedwith crimson
filling is theimportermodule. Thenodewithbluefilling is theLiteralNumericExpression,
which finally causes the importermodule’s function defaultName() to return 0. The
propagation of the transitive defect starts at the assignment of the literal zero (the blue
node), exits the exportermodule, then — as the two related modules’ graphs are inter-
connected with each other — enters and ends in the importermodule.

5.3 Complex Analyses with the Quali�er System 53

Re
tu
rn
St
at
em

en
t

St
at
em

en
t

Id
en
tif
ie
rE
xp
re
ss
io
n

Ex
pr
es
si
on

Va
ria

bl
eR
ef
er
en
ce

'n
am

e'

=
'a
' :

St
rin

g

ex
pr
es
si
on

Va
ria

bl
e

'n
am

e'

=
'c
' :

St
rin

g

D
ec
la
ra
tio

n
'k
in
d'

=
'L
et
' :

St
rin

g

de
cl
ar
at
io
ns

Re
fe
re
nc
e

'a
cc
es
si
bi
lit
y'

=
'R
ea
d'

: S
tr
in
g

re
fe
re
nc
es

Re
fe
re
nc
e

'a
cc
es
si
bi
lit
y'

=
'W

rit
e'

: S
tr
in
g

re
fe
re
nc
es

Va
ria

bl
eR
ef
er
en
ce

Bi
nd

in
gI
de
nt
ifi
er

Bi
nd

in
g

'n
am

e'

=
'c
' :

St
rin

g

no
de

Id
en
tif
ie
rE
xp
re
ss
io
n

Ex
pr
es
si
on

Va
ria

bl
eR
ef
er
en
ce

'n
am

e'

=
'c
' :

St
rin

g

no
de

no
de

Va
ria

bl
eD

ec
la
ra
to
r

N
od

e

Ex
pr
es
si
on

Fu
nc
tio

nE
xp
re
ss
io
n

Fu
nc
tio

n
'is
G
en
er
at
or
' =

fa
ls
e
: b
oo

le
an

in
it

bi
nd

in
g

N
od

e
Fu
nc
tio

nB
od

y
Fu
nc
tio

nB
od

yE
xp
re
ss
io
n

bo
dy

Va
ria

bl
eR
ef
er
en
ce

Bi
nd

in
gI
de
nt
ifi
er

Bi
nd

in
g

'n
am

e'

=
'd
' :

St
rin

g

na
m
e

N
od

e
Fo
rm

al
Pa
ra
m
et
er
s

pa
ra
m
s

N
od

e
Va
ria

bl
eD

ec
la
ra
tio

n
Fu
nc
tio

nD
ec
la
ra
tio

nC
la
ss
D
ec
la
ra
tio

nV
ar
ia
bl
eD

ec
la
ra
tio

n
Va
ria

bl
eD

ec
la
ra
tio

nA
ss
ig
nm

en
tT
ar
ge
t

Va
ria

bl
eD

ec
la
ra
tio

nE
xp
re
ss
io
n

'k
in
d'

=
'le
t'
: S
tr
in
g

de
cl
ar
at
or
s

Va
ria

bl
eR
ef
er
en
ce

Bi
nd

in
gI
de
nt
ifi
er

Bi
nd

in
g

'n
am

e'

=
'b
' :

St
rin

g

Re
tu
rn
St
at
em

en
t

St
at
em

en
t

Ex
pr
es
si
on

Ca
llE
xp
re
ss
io
n

ex
pr
es
si
on

ca
lle
e

Va
ria

bl
eR
ef
er
en
ce

Bi
nd

in
gI
de
nt
ifi
er

Bi
nd

in
g

'n
am

e'

=
'a
' :

St
rin

g

N
od

e
Fu
nc
tio

nB
od

y
Fu
nc
tio

nB
od

yE
xp
re
ss
io
n

st
at
em

en
ts

St
at
em

en
t

Va
ria

bl
eD

ec
la
ra
tio

nS
ta
te
m
en
t

st
at
em

en
ts

de
cl
ar
at
io
n

Ex
po

rt
D
ef
au
lt

Ex
po

rt
D
ec
la
ra
tio

n

St
at
em

en
t

Fu
nc
tio

nD
ec
la
ra
tio

nC
la
ss
D
ec
la
ra
tio

nV
ar
ia
bl
eD

ec
la
ra
tio

n
Fu
nc
tio

n
Fu
nc
tio

nD
ec
la
ra
tio

n
Fu
nc
tio

nD
ec
la
ra
tio

nC
la
ss
D
ec
la
ra
tio

nE
xp
re
ss
io
n

'is
G
en
er
at
or
' =

fa
ls
e
: b
oo

le
anbo

dy

na
m
e

bo
dy

pa
ra
m
s

st
at
em

en
ts

Va
ria

bl
eD

ec
la
ra
to
r

N
od

e

bi
nd

in
g

Ex
pr
es
si
on

Li
te
ra
lN
um

er
ic
Ex
pr
es
si
on

'v
al
ue
' =

0.
0
: d
ou

bl
e

in
it

Va
ria

bl
e

'n
am

e'

=
'b
' :

St
rin

g

D
ec
la
ra
tio

n
'k
in
d'

=
'F
un

ct
io
nD

ec
la
ra
tio

n'

: S
tr
in
g

de
cl
ar
at
io
ns

no
de

D
ec
la
ra
tio

n
'k
in
d'

=
'V
ar
' :

St
rin

g

no
de

Va
ria

bl
e

'n
am

e'

=
'a
' :

St
rin

g

de
cl
ar
at
io
ns

Re
fe
re
nc
e

'a
cc
es
si
bi
lit
y'

=
'W

rit
e'

: S
tr
in
g

re
fe
re
nc
es

Re
fe
re
nc
e

'a
cc
es
si
bi
lit
y'

=
'R
ea
d'

: S
tr
in
g

re
fe
re
nc
es

no
de

no
de

Va
ria

bl
e

'n
am

e'

=
'd
' :

St
rin

g

D
ec
la
ra
tio

n
'k
in
d'

=
'F
un

ct
io
nE
xp
re
ss
io
nN

am
e'

: S
tr
in
g

de
cl
ar
at
io
ns

no
de

N
od

e
Va
ria

bl
eD

ec
la
ra
tio

n
Fu
nc
tio

nD
ec
la
ra
tio

nC
la
ss
D
ec
la
ra
tio

nV
ar
ia
bl
eD

ec
la
ra
tio

n
Va
ria

bl
eD

ec
la
ra
tio

nA
ss
ig
nm

en
tT
ar
ge
t

Va
ria

bl
eD

ec
la
ra
tio

nE
xp
re
ss
io
n

'k
in
d'

=
'v
ar
' :

St
rin

g

de
cl
ar
at
or
s

im
po

rt
er

m
od

ul
e

St
at
em

en
t

Va
ria

bl
eD

ec
la
ra
tio

nS
ta
te
m
en
t

de
cl
ar
at
io
n

Fi
gu
re
5.
12

Th
et

ra
ns
iti
on

pa
th

of
th
er

un
ni
ng

ex
am

pl
e’s

di
vi
sio

n
by

ze
ro

de
fe
ct

5.3 Complex Analyses with the Quali�er System 54

5.3.2 Introduction: The Quali�er System

The Qualifier System is the generalisation of Dániel Stein’s Type System [7]. The system
assigns well-defined constraints to ASG nodes satisfying certain criteria, then propagates
these constraints through the graph by certain rules. These constraints — the qualifiers —
are instances of the Qualifier System: they are represented by graph nodes, connected to a
central QualifierSystem collector node with an :_instance relationship.

The graph manipulations of the Qualifier System are performed:

• after the analysed repository is imported/synchronised, the source files’ ASGs are
constructed, and the related modules’ graphs are interconnected to each other,

• before the defect patterns of the analyses are matched.

This allows to first manipulate the graph in several ways by assigning and propagating
the qualifiers, and then build pattern matching expressions specifically for the qualifier
instances. This way, transitive defects — like the running example of Chapter 2, where the
division by zero is passed along multiple functions and variable assignments — can be
detected by deducing the transitions by the qualifiers.

The basic operation of the system is the following. In the enumeration below, the phase
description is followed by a concrete demonstrative case based on the running example
presented in Chapter 2.

1. Initialise the Qualifier System. Create the QualifierSystem collector node and
the qualifier instance nodes. In the running example, the analysis is based on
propagating the EqualsZero qualifier instance.

2. Identify all literals which can be directlymarked with a qualifier instance. Con-
nect them to the right qualifier instance with the edge :_qualifier. In the run-
ning example, the LiteralNumericExpression node of the var a = 0; variable
declaration statement is connected to the EqualsZero instance.

3. Connect adjacentnodes to the samequalifier if they satisfypropagationcriteria.
In the running example, the VariableDeclarator node is also connected to the
EqualsZero qualifier instance, because it satisfies the propagation criterion of being
connected to a LiteralNumericExpression by an init relationship.

4. Repeat the previous step until there is nomodification in the graph.1 In the run-
ning example — after the propagation finished— the EqualsZero qualifier will be
connected to every entity that is caused to be zero because of the var a = 0; assign-
ment, including the exported function b(), and thus the imported defaultName()
function—which is the right-hand side value of the division. Therefore, the transitive
division by zero defect can be detected by simply checking whether the right-hand
side of the expression has an EqualsZero qualifier.

1There has to be a stop condition for unintentional infinite loops.

5.3 Complex Analyses with the Quali�er System 55

If the propagation of the Qualifier System finishes, then all transitive defects are closed in
the meaning that every spread of the defect is marked with a qualifier, so it can be easily
detected by a simple pattern matching expression. The following subsections present
examples for detecting transitive defects with the Qualifier System.

5.3.3 The Running Example’s Division By Zero (transitive)

Detecting a transitive division by zero defect — when the zero expression is not a numeric
literal 0, but a variable or a function providing the value zero — requires the right-hand
value of the division expression to be deduced. If this value comes from several nested
variable assignments and functions, like presented in the running example, the originating
value has to be found: a variable assignment with a numeric literal.

Finding a variable assignment, where a numeric literal is the assigned value, can be
carried out by simple pattern matching. If this value equals zero, its graph node, the
LiteralNumericExpression is qualified by using an EqualsZero qualifier instance. Af-
ter this assignment has been qualified, its adjacent nodes are inspected whether they
can be also qualified, according to the propagation rules1 of the Qualifier System. In
the current case, after the LiteralNumericExpression, its only adjacent ASG node, the
VariableDeclaration gets qualified too by EqualsZero. This is valid, because the init
edge connecting the two nodes is allowed to propagate an EqualsZero qualifier instance.
After the VariableDeclaration has been qualified, its adjacent nodes are inspected
whether they can be qualified, and the propagation algorithm continues until there are no
more paths the qualifier instance could be propagated further on.

In the running example, the propagation of the EqualsZero qualifier instance stops at the
right-hand value of the importer module’s division expression. Semantically, the mean-
ing that the right-hand value of the division expression is qualified with an EqualsZero
instance: the division’s right-hand side value (the value returned by the defaultName()
function) has been successfully deduced, and found to be equal to zero.

After the propagation of qualifiers, a simple pattern matching query checks if there are any
right-hand values of division expressions qualified by EqualsZero. If yes, then a division
by zero is performed, so it is reported to the developer.

Figure 5.13 presents the propagation of the EqualsZero qualifier, regarding the running
example’s transitive division by zero defect. Although the figure is analogous to Figure 5.12
by showing the same path, Figure 5.12 shows the propagation path of the defect, while
Figure 5.13 shows the propagation of the EqualsZero qualifier, following the defect.

1The propagation rules or propagation criteria of Codemodel-Rifle’s Qualifier System is implemented as
pattern matching queries. Let N1 be qualified by a qualifier instance, and let N2 be an adjacent node of N1 via
the relationship R. If R is member of the set of qualifier propagator relationships, then N2 gets qualified too.

5.3 Complex Analyses with the Quali�er System 56

ReturnStatem
ent

Statem
ent

IdentifierExpression
Expression

VariableReference
'nam

e'
 =

 'a'

expression

Q
ualifier

EqualsZero

_qualifier

Variable
'nam

e'
 =

 'c'

D
eclaration

declarations

Reference

references

Reference

references

_qualifier

VariableReference
BindingIdentifier

Binding
'nam

e'
 =

 'c'

node

IdentifierExpression
Expression

VariableReference
'nam

e'
 =

 'c'

node
node

_qualifier

VariableD
eclarator

N
odeExpression
FunctionExpression

Function
'isG

enerator'
 =

 false

init

binding
VariableReference
BindingIdentifier

Binding
'nam

e'
 =

 'd'

nam
e

N
ode

FunctionBody
FunctionBodyExpression

body

_qualifier

_qualifier

N
ode

VariableD
eclaration

declarators

VariableReference
BindingIdentifier

Binding
'nam

e'
 =

 'b'

_qualifier

ReturnStatem
ent

Statem
ent

Expression
CallExpression expression

callee

_qualifier
VariableReference
BindingIdentifier

Binding
'nam

e'
 =

 'a'_qualifier

N
ode

FunctionBody
FunctionBodyExpression

statem
entsStatem

ent
VariableD

eclarationStatem
ent

statem
ents

declaration

ExportD
efault

ExportD
eclaration

Statem
ent

Function
FunctionD

eclaration
'isG

enerator'
 =

 false

body

nam
e

body

statem
ents

VariableD
eclarator

N
ode

binding

Expression
LiteralN

um
ericExpression

'value'
 =

 0.0

init

_qualifier

Variable
'nam

e'
 =

 'b'

D
eclaration

declarations

_qualifier
node

VariableReference
BindingIdentifier

Binding
'nam

e'
 =

 'defaultN
am

e'

node

D
eclaration

node Variable
'nam

e'
 =

 'a'

declarationsReference

references

Reference

references

_qualifier
node

node

Variable
'nam

e'
 =

 'd'

D
eclaration

declarations

node

N
ode

VariableD
eclaration

declarators

Statem
ent

VariableD
eclarationStatem

ent

declaration

VariableD
eclarator

N
ode

VariableReference
BindingIdentifier

Binding
'nam

e'
 =

 'divisionByZero'

binding

Expression
BinaryExpression
'operator'

 =
 'D

iv'

init

Expression
LiteralN

um
ericExpression

'value'
 =

 5.0 left

Expression
CallExpression

right

Reference

node

IdentifierExpression
Expression

VariableReference
'nam

e'
 =

 'defaultN
am

e'

_qualifier

Im
port

Im
portD

eclaration
'm

oduleSpecifier'
 =

 'exporter'

defaultBinding

N
ode

VariableD
eclaration

declarators

Statem
ent

VariableD
eclarationStatem

ent

declaration

Variable
'nam

e'
 =

 'divisionByZero'

references

D
eclaration

declarations

node

callee

_qualifier

Reference

node

Variable
'nam

e'
 =

 'defaultN
am

e'

declarations
references

_qualifier

Q
ualifierSystem

_instance

Figure
5.13

Thepropagation
path

ofthe
EqualsZeroqualifierinstanceatanalysingtherunningexam

ple

5.3 Complex Analyses with the Quali�er System 57

5.3.4 Misuse of Negative Integers as Function Arguments (transitive)

Detecting the misuse of negative function arguments in trasitive cases — when the argu-
ment is not a numeric literal, but a variable, whose value can be anything — needs the
same value deduction, as detecting a transitive division by zero defect. The difference is
the usage of qualifiers: in this case, a NegativeNumeric qualifier1 is utilised instead of an
EqualsZero.

The NegativeNumeric qualifier is propagated through the graph along the variable assign-
ments and function return expressions, similarly to the EqualsZero, with the same stop
condition. After the propagation of the qualifier, a simple pattern matching query checks
if there are any Math.sqrt() or Math.log() function calls with their arguments marked
as NegativeNumeric. If yes, then it is a misuse of negative function argument defect, so it
is reported to the developer.

5.3.5 Unreachable Code Caused by Exception (transitive)

The exception handling of the ECMAScript language has the same semantics as Java. If
exceptions thrown with the throw keyword are surrounded by a try..catch block context,
they get caught, and they can be processed or thrown further.

function throwsException() {
return function () {

throw new SQLException;
};

}
let a = throwsException;
let b = function () {

return function () {
let c = throwsException();
return 42;

}
};
console.log(b());
console.log(42);

Figure 5.14 Deeply nested exception in ECMAScript

An exception halts the execution of the program, and yields it to the exception handler —
1The qualifiers’ names can be arbitrary, the semantic design of a qualifier-based analysis requires no

predefined naming system. The name of a qualifier instance matters only at implementing the pattern
matching algorithms for the analyses: e.g. an EqualsZero qualifier is only an error if it is connected to the
right-hand side of a division expression.

5.4 Limitations of the Analyses 58

the catch block —, at least if there is such handler implemented by the developer. Source
code following an exception throwing statement is not executed, therefore it is unreachable
or dead code. Most static analysis tools detect dead code caused by exceptions, but only
very shallowly.

Figure 5.14 presents a program with an exception nested into several levels of functions.
The program— instead of logging 42 to the console—will halt, since calling function b()
will eventually cause an SQLException to be thrown.

By introducing the ExceptionThrown qualifier instance into the Qualifier System, the
propagation path of an exception can be tracked. At analysing the code of Figure 5.14, first
the throw new SQLException statement gets marked by the ExceptionThrown qualifier.
Then after several steps of propagation, function b() also gets marked, therefore it can
be easily found by pattern matching.

My analysis for exception-caused unreachable code reports that:

• an exception is thrown at the execution of the statement console.log(b()), and
• because of the exception, the statement console.log(42)will never be executed.

5.4 Limitations of the Analyses

Though the graph-based static analysis approach is a promising novelty from several
aspects, my analyses presented in this thesis are limited in many ways. Implementing
ECMAScript module interconnections and introducing the Qualifier System were both
relevant acts, but they are only supporting elements of the analyses themselves.

Codemodel-Rifle’s variable and function value deductions are primitive: no arithmetic
operations are supported, the framework tracks only raw, unmodified values. Conditional
cases are not covered either: an exception gets detected only if it is unconditionally thrown.

Implementing sound and complete analyses with the Codemodel-Rifle framework is not
the subject of this thesis. But — building upon the work of Dániel Stein — the first steps
have been made to create a versatile graph-based static analysis tool capable of inspecting
enterprise-grade source code repositories coherently.

59

Chapter 6

Evaluation of Performance

In this chapter, I evaluate the framework’s performance by measuring the duration of
analysing several source code repositories.

6.1 Evaluation Environment

6.1.1 Computer Con�guration

The measurements were performed onmy computer for the sake of simplicity. During a
measurement session, my computer was plugged in, it was configured to utilise its full
performance, and only those software were running, which were explicitly necessary for
the measurements. Each measurement session was preceded by a full system restart.

The major points of the my computer’s configuration are the following:

• Brand andmodel: Apple MacBook Pro, Mid-2014, 13 inches;
• CPU: Intel Core i5 (4278U), 2.6 GHz;
• Memory: 8 GB 1600 MHz DDR3 RAM;
• Storage: 250 GB SSD.

6.1.2 Software Con�guration

As currently the Codemodel-Rifle framework does not have any interface to interact with,
the measurements were performed as per-repository unit tests with logging test results
onto the console.

• Runtime: JetBrains IntelliJ IDEA Ultimate 2016.3.4
• Java Runtime Environment: 1.8.0_112-release-408-b6 x86_64
• Java Virtual Machine: OpenJDK 64-Bit Server VM by JetBrains s.r.o (initial memory
allocation pool: 4 GB, maximummemory allocation pool: 8 GB)

6.2 Measurement Goals and Methods 60

• Database: Neo4j Community Edition 3.1.3 Server (initial heap size: 4 GB, maximum
heap size: 8 GB, page cache size: 8 GB, transaction log retention policy: 1 day)

• Database driver: Neo4j Bolt driver for Java 1.1.1

For better performance, a database index was defined in Neo4j for the ‘id’ property of all
nodes labeled with ’AsgNode’ (practically all nodes created by Codemodel-Rifle).

6.2 Measurement Goals and Methods

6.2.1 Selection Criteria of the Analysed Source Code Repositories

The evaluation was performed on popular open-source JavaScript code repositories ran-
domly chosen and downloaded from GitHub, and on a closed-source, security-oriented
product from Tresorit, called webclient. The altogether 40 repositories (listed in the
Appendix) differ in size, in the number of lines of code, and in the number of source files.

6.2.2 Key Performance Indices

The goal of the performance evaluation was to determine the time characteristics of the
extended Codemodel-Rifle framework, especially the implemented analyses. Based on
the production operation of the framework detailed in the introduction of Chapter 5, the
following Key Performance Indices have been determined to be measured.

• The duration of synchronisation: the time period between starting the importing
process of a code repository (excl. finding all .js files, and reading the contents of
the source files) and saving the last module’s last AsgNode into the database.

• The duration of interconnection: this time period encompasses searching for se-
mantically valid interconnections amongst related modules’ property graphs, and
actually performing the interconnections.

• The duration of running the Qualifier System: this time period encompasses ini-
tialising the Qualifier System, and propagating the qualifiers.

• The duration of performing the analyses: this time period encompasses trying to
match all predefined analysis patterns and logging analysis results.

• The total duration of the analysis process: the calculated sum of the above four.

Besides the Key Performance Indices, the number of graph nodes and relationships created
during the synchronisation of a repository is also recorded.

6.2.3 Process of Measurement

All analysed code repositories were measured four times in a session in order to avoid
biases caused by the environment. Each session was preceded by a full system restart. The
final measurement results of a repository are averaged from the four different values.

6.3 Measurement Results 61

6.3 Measurement Results

In this section, I present and evaluate the measurement results of the aforementioned Key
Performance Indices.

6.3.1 Synchronisation

At first, a repository needs to be synchronised into Codemodel-Rifle. In this phase, the
source code files of the repository get translated to distinct, per-module property graphs.

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

10 100 1 000 10 000 100 000

N
um

be
r o

f n
od

es
 a

nd
 re

la
tio

ns
hi

ps
 in

 th
e

AS
G

Lines of source code — JavaScript only, without comments [SLOC]

Nodes Relationships

Figure 6.1 The characteristics of synchronising repositories into Codemodel-Rifle

There are many coding styles and conventions, and the contents of the source files can
vary from per-line exported configuration constants to program codes without physical
line breaks. Nevertheless, there is a linear relationship between the number of code lines
and the number of created ASG nodes and relationships in the analysed repositories.

Figure 6.1 presents the correlation of the source lines of code (SLOC) and the number of ASG
nodes and relationships created during synchronising the code bases into Codemodel-Rifle.
In terms of SLOC, the smallest repository imported was initialstate/silent-doorbell
with15 lines of code (686nodes and2,306 relationships), while the largestwastresorit/webclient
with 34,546 lines of code (1,346,776 nodes and 4,576,319 relationships).

6.3 Measurement Results 62

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

10 100 1 000 10 000 100 000

D
ur

at
io

n
of

 s
yn

ch
ro

ni
sa

tio
n

[μ
s]

Lines of source code — JavaScript only, without comments [SLOC]

Figure 6.2 The characteristics of synchronising repositories into Codemodel-Rifle

As for the duration of the synchronisation phase, the correlation is linear in this case too.
The bigger the repository is, the more time it consumes to synchronise the code base into
Codemodel-Rifle (as more graph nodes and relationships need to be created). Figure 6.2
shows the correlation between the duration of synchronisation and the repository size. The
shortest synchronisation duration belongs to the facundoolano/promise-log repository
with altogether 41 SLOC in 1 module, it was imported into the framework in around 7
milliseconds. The import of the largest repository, tresorit/webclientwith 34,546 SLOC
in 609 modules, took about 78 minutes.

A more evident approach is to inspect the relationship between the duration of synchro-
nisation and the repository size measured with the number of created graph nodes and
relationships. As Figure 6.3 shows, the relationship between these two values is also linear.
Practically, this means the underlying graph database, Neo4j is able to handle very large
volumes of node and relationship creations linearly. By using the database index on the
‘id’ attribute, the nodes are retrieved faster at creating the relationships.

An important thing to consider regarding Neo4j is transaction granularity. According to my
experience with the production server run onmy laptop with the configurationmentioned
earlier, the graph database tends to freeze if a very large amount of queries are committed

6.3 Measurement Results 63

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

D
ur

at
io

n
of

 s
ny

ch
ro

ni
sa

tio
n

[μ
s]

Number of nodes and relationships in the ASG

Nodes Relationships

Figure 6.3 Synchronising repositories into Codemodel-Rifle

within one transaction. In the framework’s current implementation, it is not possible to
configure the maximum number of queries committed in one turn. It is hard-coded into
the framework to handle each file in a separate transaction as a whole, to preserve at
least file-level consistency. The transactions of synchronising larger files (several hundred
kilobytes, several thousand SLOC) should be configurably split into multiple smaller ones
in the future, in order to ensure solid operation.

6.3.2 Interconnection

In theory, interconnecting ECMAScript modules is a very slow operation. The 13 imple-
mented interconnection algorithms are run one by one, eachmatching two complex graph
patterns for finding the compatible export and import cases.

In practice, however, the interconnection phase was the fastest of all. Even at the largest
analysed repository, tresorit/webclient, having 609distinct ECMAScriptmodules, 1,346,776
graph nodes and 4,576,319 graph relationships, the interconnection phase took less than
30 seconds. At smaller repositories, or at repositories having only onemodule, the duration
the interconnection phase was a small, sub-second value.

6.3 Measurement Results 64

Regarding the characteristics of the export-import interconnections, no explicit relation-
ship can be determined between the repository size or the number of modules and the
duration of the interconnection phase. This is understandable: altering the number of dis-
tinct modules in an ECMAScript project does not necessarily cause the number of related
modules to change.

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1 10 100 1 000

D
ur

at
io

n
of

 in
te

rc
on

ne
ct

in
g

re
la

te
d

m
od

ul
es

 [μ
s]

Number of distinct JavaScript source files

Figure 6.4 The characteristics of interconnecting related modules

Figure 6.4 shows the duration of interconnecting relatedmodules in the light of the number
of distinct modules in the repository. The figure shows that no relationship can be deter-
mined between the two values. Since the design of modularisation varies for every project,
simply the number of distinct modules does not indicate howmany of those modules are
related to each other.

6.3.3 The Quali�er System

Spreading qualifiers along possible propagation paths in the Abstract Semantic Graph
is a long process. In each step, a particular qualifier can traverse only one relationship
at a time— similarly to solving data-flow equations locally, based on the solution of the
preceding equation. In larger graphs containing long transitive paths, producing a full
transitive closure can involve many steps.

6.3 Measurement Results 65

The more “entry points” has a particular software for the Qualifier System (e.g. literals and
throw statements can be entry points: they are the first to be marked with qualifiers at the
initialisation of the Qualifier System), the more propagation paths need to be closed up.
The bigger the repository is, the more likely it is to contain such entry points.

1E+6

1E+7

1E+8

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

D
ur

at
io

n
of

 u
til

isi
ng

 th
e

Q
ua

lif
ie

r
Sy

st
em

 [μ
s]

Number of nodes and relationships in the ASG

Nodes Relationships

Figure 6.5 The characteristics of running the Qualifier System

Figure 6.5 presents the characteristics of theQualifier System. The relationship between the
duration of running the Qualifier System and the number of graph nodes and relationships
is not unequivocal. The two outlier values — 36 seconds for the tresorit/webclient and
38 seconds for the alvin198761/web-os—can be explained by either the large number of
transitive defects, or simply the size of the repository. It is worth to mention though, that
while the web-os contains only 5,922 SLOC, the webclient has 34,546 SLOC. The similar
duration of running the Qualifier System with this difference could imply that the web-os
contains much more transitive defect paths to propagate qualifiers on.

6.3.4 Analysis

Importing, interconnecting, and applying the Qualifier System are only preparatory steps
for running the actual analyses. All analyses involve matching complex patterns, even the
ones using the results of the Qualifier System: besides qualifiers, several other attributes

6.3 Measurement Results 66

need to be queried for returning a complete set of analysis results, like code location
information, and the containing module’s file path.

Figure 6.6 presents the characteristics of the analyses. The duration of the analysis phase
seemingly does not have any relationshipwith thenumber of graphnodes and relationships
of a code repository. This is plausible, since the number of defects in a repository does not
necessarily depend on the code base’s size.

1E+6

1E+7

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

D
ur

at
io

n
of

 p
er

fo
rm

in
g

th
e

an
al

ys
es

 [μ
s]

Number of nodes and relationships in the ASG

Nodes Relationships

Figure 6.6 The characteristics of performing the analyses

6.3.5 Total Duration of the Analysis Process

The total duration of analysing a repository seems to be in linear relationship with the
repository’s size. Figure 6.7 and Figure 6.8 present that both measured in SLOC and in the
number of graph nodes and relationships, the correlation is linear: the bigger the source
code repository is, the more time it takes to perform a complete analysis process on it.

It is interesting to notice, how the proportion of the synchronisation phase’s duration
increases with the size of the repository (see the Appendix for details). While for the smaller
repositories, the import makes up only 30–40% of the total duration, for the larger reposito-
ries, it increases to 80–90%. For the tresorit/webclient repository, the synchronisation
phase alone makes up 98% of the duration of the total analysis process.

6.3 Measurement Results 67

1E+6

1E+7

1E+8

1E+9

1E+10

10 100 1 000 10 000 100 000

D
ur

at
io

n
of

 th
e

to
ta

l a
na

ly
sis

 p
ro

ce
ss

 [
μs

]

Lines of source code — JavaScript only, without comments [SLOC]

Figure 6.7 The characteristics of the full analysis process

1E+6

1E+7

1E+8

1E+9

1E+10

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

D
ur

at
io

n
of

 th
e

to
ta

l a
na

ly
sis

 p
ro

ce
ss

 [
μs

]

Number of nodes and relationships in the ASG

Nodes Relationships

Figure 6.8 The characteristics of the full analysis process

6.4 Defects Found by the Framework 68

6.4 Defects Found by the Framework

The framework detected only two types of defects in the 40 analysed repositories: 897
cases of uninitialised variables, and 134 cases of globally unused exports were found. As
the analysis is neither sound, nor complete, these numbers can be inaccurate. However, I
inspected a randomly chosen subset of the found defects manually, and— according to
my experience — the defects were indeed present in all cases.

6.5 Threats to Validity

I designed the measurements to be as accurate and complete as possible. Nevertheless,
there are factors which I could not fully control, and these may have influenced the results.
In this section, I summarise the factors which could bias the measurements.

Measurements on a Consumer Laptop Since my computer runs an operating system
targeted for consumer usage, it may contain software running in the background, which
influence measurement factors like processor or memory usage. I tried to mitigate this
by configuring the computer to utilise all resources for the measurement procedure, by
running the measurements multiple times, and by analysing a larger number of code
repositories independently.

Graph Query Optimisations I tried to optimise the graph queries of the interconnections
and the analyses as much as I could. However, since I am not an expert in the internals of
Cypher queries, it is possible that some queries can be optimised further. Therefore, the
characteristics of the interconnections or the analyses may not be fully correct.

Methological Mistakes It is possible that I made other methodological mistakes at im-
plementing the analyses or the measurements. Using a fluid, internal semantics for the
interconnection of modules incorrectly can be an example of a such mistake.

69

Chapter 7

Conclusion and Future Work

My primary object was to extend the Codemodel-Rifle framework with analysis algorithms.
To make the framework practically usable, this involved several other supporting features
to be planned and implemented.

Codemodel-Rifle was rearchitectured to become modular. Therefore, by changing compo-
nents if necessary, the framework can adapt to various requirements and use-cases. The
software was also reworked semantically, by elaborating the capability of performing anal-
yses on multiple modules coherently, the Qualifier System, and the analyses themselves.

Once the framework contains enough analyses, it can be a practical tool for helping devel-
opers in finding defects. By this time, utilising module interconnections and the Qualifier
System, it is expressive enough to cover a large set of statically analysable use-cases.

7.1 Summary of Contributions

I contributed to the development of the framework in two ways. Scientific contributions
encompass the performances regarding the analysis of ECMAScript, and the language
itself. Engineering contributions cover designing the architecture of a large-scale, modular
code analysis software, and implementing a proof-of-concept prototype.

7.1.1 Scienti�c Contributions

I have achieved the following scientific contributions:

• Defined the semantics of interconnecting multiple Abstract Semantic Graphs along
the export-import statements of the ECMAScript language.

• Proposedanapproach to evaluate graph-based static analyses overmultipleECMAScript
modules coherently.

7.2 Future Work 70

• Provided an extensible data model and an algorithm for analysing the data flow of
ECMAScript software.

7.1.2 Engineering Contributions

I have also achieved the following engineering contributions:

• Designed a modular architecture for an analysis framework to be capable to scale
and adapt to various requirements.

• Created a specialised Object-GraphMapping layer for optimising the transformation
of Abstract Syntax Trees into Abstract Semantic Graphs.

• Implemented a specialised Query Builder for the Cypher language.
• Elaborated several graph-based analyses for the ECMAScript language.

7.2 Future Work

The goal of the work described in this thesis was to extend the Codemodel-Rifle framework
with analysis algorithms. By implementing several other supporting features, the scope
broadened: it is now possible to analyse multiple modules coherently, and to inspect the
data flow of ECMAScript software. Implementing more— andmore precise — analyses,
which utilise these new capabilities is a task for the future.

Further optimisations can be done at various points of the architecture. By collaborating
with version-control systems like Git for file-level incremental processing, the speed of the
analysis procedure can be increased significantly.

To involve Codemodel-Rifle into various software development methods, the framework
should be able to communicate with other applications. Thus, the capability of producing
machine-readable output is to be implemented. Also, creating plugins for continuous
integration platforms would make possible to embed the framework into well-known
software production architectures.

71

Acknowledgements

I would like to thank my supervisors Dávid Honfi and Gábor Szárnyas for their friendly
advice and enthusiasm, and for being available and fully responsive at any time.

I would like to thank Dániel Stein for creating and documenting the foundations of my re-
search, and for providing guidance and continuous support regarding the Codemodel-Rifle
framework. I would also wish to express my gratitude to Ádám Lippai for his numerous
valuable suggestions, and for making the webclient proprietary software of Tresorit avail-
able for analysis. I would also like to thank András Vörös, KristófMarussy, Oszkár Semeráth,
and other members of the Fault Tolerant Systems Research Group for providing assistance
during writing this thesis.

Last but not least, I amdeeply grateful tomy family and friends for their continuous support
and understanding.

MTA–BME Lendület This work was partially supported by the MTA-BME Lendület Re-
search Group on Cyber-Physical Systems.

73

References

[1] MauriceDawson, Darrell N Burrell, EmadRahim, and StephenBrewster. “Integrating
Software Assurance into the Software Development Life Cycle (SDLC)”. In: Journal
of Information Systems Technology and Planning 3.6 (2010), p. 51.

[2] Gregory Tassey. “The Economic Impacts of Inadequate Infrastructure for Software
Testing”. In: National Institute of Standards and Technology, RTI Project 7007.011
(2002).

[3] Michael Hilton, Timothy Tunnell, Kai Huang, DarkoMarinov, andDannyDig. “Usage,
Costs, and Benefits of Continuous Integration in Open-Source Projects”. In: Auto-
mated Software Engineering (ASE), 2016 31st IEEE/ACM International Conference on.
IEEE. 2016, pp. 426–437.

[4] Martin Fowler. Continuous Integration. URL: http://www.martinfowler.com/
articles/continuousIntegration.html (visited on 04/24/2017).

[5] StackOverflow. Developer Survey Results 2016. URL: http://stackoverflow.com/
insights/survey/2016 (visited on 04/25/2017).

[6] ECMA International. Standard ECMA-262, 7th Edition. URL: https://www.ecma-
international.org/publications/standards/Ecma-262.htm (visited on
04/25/2017).

[7] Dániel Stein. “Graph-Based Source Code Analysis of JavaScript Repositories”. Mas-
ter’s thesis. Budapest University of Technology and Economics, 2016.

[8] Fault Tolerant Systems Research Group (Budapest University of Technology and Eco-
nomics). Codemodel-Rifle – Graph-based incremental static analysis of ECMAScript 6
source code repositories. URL: https://github.com/ftsrg/codemodel-rifle
(visited on 05/01/2017).

[9] Tresorit.End-to-EndEncryptedCloudStorage forBusinesses.URL:https://tresorit.
com (visited on 04/25/2017).

[10] Pär Emanuelsson and Ulf Nilsson. “A comparative study of industrial static analysis
tools”. In: Electronic notes in theoretical computer science 217 (2008), pp. 5–21.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://stackoverflow.com/insights/survey/2016
http://stackoverflow.com/insights/survey/2016
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://github.com/ftsrg/codemodel-rifle
https://tresorit.com
https://tresorit.com

REFERENCES 74

[11] B. A. Wichmann, A. A. Canning, D. L. Clutterbuck, L. A. Winsborrow, N. J. Ward, and
D. W. R. Marsh. “Industrial perspective on static analysis”. In: Software Engineering
Journal 10.2 (1995), pp. 69–75. DOI: 10.1049/sej.1995.0010.

[12] Wikipedia. List of tools for static code analysis.URL:https://en.wikipedia.org/
wiki/List_of_tools_for_static_code_analysis (visited on 04/25/2017).

[13] Benjamin Livshits. “Improving software security with precise static and runtime
analysis”. PhD thesis. Stanford University, 2006.

[14] Paul Anderson. “The use and limitations of static-analysis tools to improve software
quality”. In: CrossTalk: The Journal of Defense Software Engineering 21.6 (2008),
pp. 18–21.

[15] AlanMathisonTuring. “Oncomputable numbers,with anapplication to theEntschei-
dungsproblem”. In: Proceedings of the London Mathematical Society 2.1 (1937),
pp. 230–265.

[16] David Flanagan. JavaScript: the definitive guide. "O’Reilly Media, Inc.", 2006.
[17] Charles Severance. “JavaScript: Designing a Language in 10 Days”. In: Computer 45

(2012), pp. 7–8. DOI: doi.ieeecomputersociety.org/10.1109/MC.2012.57.
[18] WorldWideWeb Consortium Community. A Short History of JavaScript. URL: https:

//www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
(visited on 04/26/2017).

[19] Node.js Foundation. About Node.js®. URL: https://nodejs.org/en/about
(visited on 04/26/2017).

[20] npmInc.Aboutnpm.URL:https://www.npmjs.com/about (visitedon04/26/2017).
[21] ECMA International. Standard ECMA-262, 1st Edition. URL: http://www.ecma-

international.org/publications/files/ECMA- ST- ARCH/ECMA- 262,
%201st%20edition,%20June%201997.pdf (visited on 04/25/2017).

[22] Ralf S. Engelschall. ECMAScript 6 — New Features: Overview & Comparison. URL:
http://es6-features.org (visited on 04/26/2017).

[23] PCMagazine.Definitionof: compiler.URL:http://www.pcmag.com/encyclopedia/
term/40105/compiler (visited on 04/26/2017).

[24] Rohit Kulkarni, Aditi Chavan, and AbhinavHardikar. “Transpiler and it’s Advantages”.
In: (IJCSIT) International Journal of Computer Science and Information Technologies
6.2 (2015), pp. 1629–1631. ISSN: 0975-9646.

[25] Kangax GitHub user. ECMAScript 6 compatibility table. URL: http://kangax.
github.io/compat-table/es6 (visited on 04/26/2017).

[26] Microsoft Inc.TypeScript – JavaScript that scales.URL:https://www.typescriptlang.
org (visited on 04/30/2017).

https://doi.org/10.1049/sej.1995.0010
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://doi.org/doi.ieeecomputersociety.org/10.1109/MC.2012.57
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://nodejs.org/en/about
https://www.npmjs.com/about
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://es6-features.org
http://www.pcmag.com/encyclopedia/term/40105/compiler
http://www.pcmag.com/encyclopedia/term/40105/compiler
http://kangax.github.io/compat-table/es6
http://kangax.github.io/compat-table/es6
https://www.typescriptlang.org
https://www.typescriptlang.org

REFERENCES 75

[27] Magnus Madsen, Benjamin Livshits, and Michael Fanning. “Practical static analysis
of JavaScript applications in the presence of frameworks and libraries”. In: Proceed-
ings of the 2013 9th JointMeeting on Foundations of Software Engineering. ACM. 2013,
pp. 499–509.

[28] Benjamin Livshits and Salvatore Guarnieri. “Gulfstream: incremental static analysis
for streaming JavaScript applications”. In: Proceedings of Technical Report MSR-TR-
2010-4, Microsoft (2010).

[29] SimonHolm Jensen, AndersMøller, andPeterThiemann. “Typeanalysis for JavaScript”.
In: International Static Analysis Symposium. Springer. 2009, pp. 238–255.

[30] Ariya Hidayat. Esprima: Editing Autocomplete. URL: http://esprima.org/demo/
autocomplete.html (visited on 04/26/2017).

[31] Ekaterina Prigara.HowWebStormWorks: Completion for JavaScript Libraries. URL:
https://blog.jetbrains.com/webstorm/2014/07/how- webstorm-
works-completion-for-javascript-libraries (visited on 04/26/2017).

[32] IBM Inc. IBM Graph. URL: https://www.ibm.com/us-en/marketplace/
graph (visited on 04/30/2017).

[33] ArangoDB GmbH. ArangoDB - highly available multi-model NoSQL database. URL:
https://www.arangodb.com (visited on 04/30/2017).

[34] ArangoDB GmbH. DataStax - always-on data platform | NoSQL | Apache Cassandra.
URL: https://www.datastax.com (visited on 04/30/2017).

[35] Neo Technology Inc. Neo4j, the world’s leading graph database. URL: https://
neo4j.com (visited on 04/30/2017).

[36] OrientDB LTD.OrientDB - Distributed Graph/Document Multi-Model Database. URL:
http://orientdb.com (visited on 04/30/2017).

[37] DB-Engines. Graph DBMS. URL: https://db-engines.com/en/article/
Graph+DBMS (visited on 04/26/2017).

[38] DB-Engines. DB-Engines Ranking of Graph DBMS. URL: https://db-engines.
com/en/ranking/graph+dbms (visited on 04/26/2017).

[39] Neo Technology Inc. Neo4j. URL: https : / / github . com / neo4j (visited on
04/27/2017).

[40] Neo Technology Inc.Using Neo4j in Open Source Software. URL: https://neo4j.
com/open-source (visited on 04/26/2017).

[41] Neo Technology Inc. Neo4j Licensing. URL: https://neo4j.com/licensing
(visited on 04/26/2017).

[42] Neo Technology Inc. Introduction, Casual Cluster. URL: https://neo4j.com/
docs/operations-manual/current/clustering/causal-clustering/
introduction (visited on 04/30/2017).

http://esprima.org/demo/autocomplete.html
http://esprima.org/demo/autocomplete.html
https://blog.jetbrains.com/webstorm/2014/07/how-webstorm-works-completion-for-javascript-libraries
https://blog.jetbrains.com/webstorm/2014/07/how-webstorm-works-completion-for-javascript-libraries
https://www.ibm.com/us-en/marketplace/graph
https://www.ibm.com/us-en/marketplace/graph
https://www.arangodb.com
https://www.datastax.com
https://neo4j.com
https://neo4j.com
http://orientdb.com
https://db-engines.com/en/article/Graph+DBMS
https://db-engines.com/en/article/Graph+DBMS
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://github.com/neo4j
https://neo4j.com/open-source
https://neo4j.com/open-source
https://neo4j.com/licensing
https://neo4j.com/docs/operations-manual/current/clustering/causal-clustering/introduction
https://neo4j.com/docs/operations-manual/current/clustering/causal-clustering/introduction
https://neo4j.com/docs/operations-manual/current/clustering/causal-clustering/introduction

REFERENCES 76

[43] Neo Technology Inc. Intro to Cypher. URL: https://neo4j.com/developer/
cypher-query-language (visited on 04/26/2017).

[44] Kangax GitHub user. ECMAScript 5 compatibility table. URL: http://kangax.
github.io/compat-table/es5 (visited on 04/27/2017).

[45] AarhusUniversity. TAJS - Type Analyzer for JavaScript. URL: https://github.com/
cs-au-dk/TAJS (visited on 04/27/2017).

[46] Aarhus University. Static analysis for JavaScript. URL: https://users-cs.au.dk/
amoeller/talks/TAJS2.pdf (visited on 04/27/2017).

[47] Aarhus University. TAJS: Type Analyzer for JavaScript. URL: http://www.brics.
dk/TAJS (visited on 04/27/2017).

[48] Facebook Inc. Flow. URL: https://github.com/facebook/flow (visited on
04/27/2017).

[49] Facebook Inc. Flow: A Static Type Checker for JavaScript. URL: https://flow.org
(visited on 04/27/2017).

[50] Facebook Inc. Flow Documentation. URL: https://flow.org/en/docs (visited on
04/27/2017).

[51] Marijn Haverbeke. Tern. URL: http://ternjs.net (visited on 04/27/2017).
[52] Marijn Haverbeke. Tern. URL: https://github.com/ternjs/tern (visited on

04/27/2017).
[53] SonarSource SA.SonarQube.URL:https://sonarqube.com (visitedon05/12/2017).
[54] ShapeSecurity Inc.Shift AST.URL:http://shift-ast.org (visitedon04/27/2017).
[55] Shape Security Inc. A Technical Comparison of the Shift and SpiderMonkey AST

Formats. URL: http://engineering.shapesecurity.com/2015/01/a-
technical-comparison-of-shift-and.html (visited on 04/27/2017).

[56] Ariya Hidayat. Esprima. URL: https://github.com/jquery/esprima (visited
on 04/27/2017).

[57] FindBugs. FindBugs™ - Find Bugs in Java Programs. URL: http://findbugs.
sourceforge.net (visited on 04/28/2017).

[58] Nick Rutar, Christian B Almazan, and Jeffrey S Foster. “A comparison of bug finding
tools for Java”. In: Software Reliability Engineering, 2004. ISSRE 2004. 15th Interna-
tional Symposium on. IEEE. 2004, pp. 245–256.

[59] buschmaisGbR. jQAssistant.URL:http://jqassistant.de (visitedon04/28/2017).
[60] buschmais GbR. jQAssistant User Manual. URL: http://buschmais.github.io/

jqassistant/doc/1.2.0 (visited on 04/28/2017).

https://neo4j.com/developer/cypher-query-language
https://neo4j.com/developer/cypher-query-language
http://kangax.github.io/compat-table/es5
http://kangax.github.io/compat-table/es5
https://github.com/cs-au-dk/TAJS
https://github.com/cs-au-dk/TAJS
https://users-cs.au.dk/amoeller/talks/TAJS2.pdf
https://users-cs.au.dk/amoeller/talks/TAJS2.pdf
http://www.brics.dk/TAJS
http://www.brics.dk/TAJS
https://github.com/facebook/flow
https://flow.org
https://flow.org/en/docs
http://ternjs.net
https://github.com/ternjs/tern
https://sonarqube.com
http://shift-ast.org
http://engineering.shapesecurity.com/2015/01/a-technical-comparison-of-shift-and.html
http://engineering.shapesecurity.com/2015/01/a-technical-comparison-of-shift-and.html
https://github.com/jquery/esprima
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
http://jqassistant.de
http://buschmais.github.io/jqassistant/doc/1.2.0
http://buschmais.github.io/jqassistant/doc/1.2.0

REFERENCES 77

[61] Free Software Foundation. GNU General Public License, Version 3, 29 June 2007. URL:
https://www.gnu.org/licenses/gpl-3.0.html (visited on 04/28/2017).

[62] Clang Project. Clang Static Analyzer. URL: https://clang-analyzer.llvm.org
(visited on 04/28/2017).

[63] Ted Kremenek. “Finding software bugs with the clang static analyzer”. In: Apple Inc.
(2008).

[64] Patrick Cousot and Nicolas Halbwachs. “Automatic discovery of linear restraints
among variables of a program”. In: Proceedings of the 5th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. ACM. 1978, pp. 84–96.

[65] The MathWorks Inc. Polyspace Static Analysis. URL: https://www.mathworks.
com/products/polyspace.html (visited on 04/28/2017).

[66] Synopsys Inc.Coverity is now a part of Synopsys. URL: http://www.coverity.com
(visited on 04/28/2017).

[67] Eclipse Foundation. Eclipse Public License - v 1.0. URL: https://www.eclipse.
org/legal/epl-v10.html (visited on 04/29/2017).

[68] Matt Asay.Would closing the ASP loophole create more problems than it solves? URL:
https://www.cnet.com/news/would- closing- the- asp- loophole-
create-more-problems-than-it-solves (visited on 04/29/2017).

[69] Gábor Szárnyas et al. ingraph – Incremental evaluation of openCypher queries. URL:
https://github.com/ftsrg/ingraph (visited on 04/30/2017).

[70] JetBrains s.r.o. Project Grizzly. URL: https://grizzly.java.net (visited on
04/30/2017).

[71] Curl Community. curl. URL: https://curl.haxx.se (visited on 04/30/2017).
[72] Postdot Technologies Inc. Postman | Supercharge your API workflow. URL: https:

//www.getpostman.com (visited on 04/30/2017).
[73] Gábor Szárnyas. neo4j-drivers. URL: https://github.com/szarnyasg/neo4j-

drivers (visited on 04/29/2017).
[74] Shape Security Inc. Shift Java - Shift format ECMAScript AST tooling. URL: https:

//github.com/shapesecurity/shift-java (visited on 05/01/2017).
[75] Dr. Axel Rauschmayer. Exploring ES6: Upgrade to the next version of JavaScript. 2016.
[76] JavaScript Jabber. JavaScript Jabber with Matt Pardee, Charles Max Wood, Jamison

Dance, Tim Caswell. URL: https://devchat.tv/js- jabber//020- jsj-
cloud9 (visited on 05/06/2017).

[77] Ruben Daniels. Twitter post. URL: https://twitter.com/javruben/status/
233580129798991872 (visited on 05/06/2017).

https://www.gnu.org/licenses/gpl-3.0.html
https://clang-analyzer.llvm.org
https://www.mathworks.com/products/polyspace.html
https://www.mathworks.com/products/polyspace.html
http://www.coverity.com
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html
https://www.cnet.com/news/would-closing-the-asp-loophole-create-more-problems-than-it-solves
https://www.cnet.com/news/would-closing-the-asp-loophole-create-more-problems-than-it-solves
https://github.com/ftsrg/ingraph
https://grizzly.java.net
https://curl.haxx.se
https://www.getpostman.com
https://www.getpostman.com
https://github.com/szarnyasg/neo4j-drivers
https://github.com/szarnyasg/neo4j-drivers
https://github.com/shapesecurity/shift-java
https://github.com/shapesecurity/shift-java
https://devchat.tv/js-jabber//020-jsj-cloud9
https://devchat.tv/js-jabber//020-jsj-cloud9
https://twitter.com/javruben/status/233580129798991872
https://twitter.com/javruben/status/233580129798991872

REFERENCES 78

[78] Scott Hanselman. Integrating Office and the Open Web with Lucidchart’s Brian Pugh.
URL: https://hanselminutes.com/371/integrating-office-and-the-
open-web-with-lucidcharts-brian-pugh (visited on 05/06/2017).

[79] Mozilla Developer Networks. export. URL: https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Statements/export (visited on
05/06/2017).

[80] Mozilla Developer Networks. import. URL: https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Statements/import (visited on
05/06/2017).

[81] ECMA International. Exports. URL: http://www.ecma-international.org/
ecma-262/6.0/#sec-exports (visited on 05/06/2017).

[82] ECMA International. Imports. URL: http://www.ecma-international.org/
ecma-262/6.0/#sec-imports (visited on 05/07/2017).

https://hanselminutes.com/371/integrating-office-and-the-open-web-with-lucidcharts-brian-pugh
https://hanselminutes.com/371/integrating-office-and-the-open-web-with-lucidcharts-brian-pugh
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
http://www.ecma-international.org/ecma-262/6.0/#sec-exports
http://www.ecma-international.org/ecma-262/6.0/#sec-exports
http://www.ecma-international.org/ecma-262/6.0/#sec-imports
http://www.ecma-international.org/ecma-262/6.0/#sec-imports

79

Appendix

A Cypher Queries for Interconnecting the ASGs of RelatedModules

A.1 exportAlias–importAlias

MATCH
// exporter.js: export { name1 as exportedName1 };

(exporter:CompilationUnit)-[:contains]->(:ExportLocals)
-[:namedExports]->(exportLocalSpecifier:ExportLocalSpecifier)
-[:name]->(:IdentifierExpression)
<-[:node]-(:Reference)
<-[:references]-(:Variable)
-[:declarations]->(declarationToMerge:Declaration)
-[:node]->(:BindingIdentifier),

// importer.js: import { exportedName1 as importedName1 } from
"exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportLocalSpecifier.exportedName = importSpecifier.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 80

A.2 exportAlias–importDefault

MATCH
// exporter.js: export { name1 as default };

(exporter:CompilationUnit)-[:contains]->(:ExportLocals)
-[:namedExports]->(exportLocalSpecifier:ExportLocalSpecifier)
-[:name]->(:IdentifierExpression)
<-[:node]-(:Reference)
<-[:references]-(:Variable)
-[:declarations]->(declarationToMerge:Declaration)
-[:node]->(:BindingIdentifier),

// importer.js: import defaultName from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:defaultBinding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportLocalSpecifier.exportedName = ’default’

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 81

A.3 exportAlias–importName

MATCH
// exporter.js: export { name1 as exportedName1 };

(exporter:CompilationUnit)-[:contains]->(:ExportLocals)
-[:namedExports]->(exportLocalSpecifier:ExportLocalSpecifier)
-[:name]->(:IdentifierExpression)
<-[:node]-(:Reference)
<-[:references]-(:Variable)
-[:declarations]->(declarationToMerge:Declaration)
-[:node]->(:BindingIdentifier),

// importer.js: import { exportedName1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportLocalSpecifier.exportedName =

importBindingIdentifierToMerge.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 82

A.4 exportDeclaration–importAlias

MATCH
// exporter.js: export var name1;

(exporter:CompilationUnit)-[:contains]->(:ExportDeclaration)
-[:declaration]->
(:FunctionDeclarationClassDeclarationVariableDeclaration)
-[:declarators]->(:VariableDeclarator)
-[:binding]->(exportBindingIdentifier:BindingIdentifier)
<-[:node]-(declarationToMerge:Declaration)
<-[:declarations]-(:Variable),

// importer.js: import { name1 as importedName1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportBindingIdentifier.name = importSpecifier.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 83

A.5 exportDeclaration–importName

MATCH
// exporter.js: export var name1;

(exporter:CompilationUnit)-[:contains]->(:ExportDeclaration)
-[:declaration]->
(:FunctionDeclarationClassDeclarationVariableDeclaration)
-[:declarators]->(:VariableDeclarator)
-[:binding]->(exportBindingIdentifier:BindingIdentifier)
<-[:node]-(declarationToMerge:Declaration)
<-[:declarations]-(:Variable),

// importer.js: import { name1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportBindingIdentifier.name = importBindingIdentifierToMerge.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 84

A.6 exportDefaultDeclaration–importAlias

MATCH
// exporter.js: export default name1;

(exporter:CompilationUnit)-[:contains]->(:ExportDefault)
-[:body]->(:FunctionDeclarationClassDeclarationVariableDeclaration)
-[:name]->(exportBindingIdentifier:BindingIdentifier)
<-[:node]-(declarationToMerge:Declaration)
<-[:declarations]-(exportedVariable:Variable),

// importer.js: import { name1 as importedName1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND importSpecifier.name = exportBindingIdentifier.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 85

A.7 exportDefaultDeclaration–importDefault

MATCH
// exporter.js: export default name1;

(exporter:CompilationUnit)-[:contains]->(:ExportDefault)
-[:body]->(:FunctionDeclarationClassDeclarationVariableDeclaration)
-[:name]->(exportBindingIdentifier:BindingIdentifier)
<-[:node]-(declarationToMerge:Declaration)
<-[:declarations]-(exportedVariable:Variable),

// importer.js: import defaultName from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:defaultBinding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 86

A.8 exportDefaultDeclaration–importName

MATCH
// exporter.js: export default name1;

(exporter:CompilationUnit)-[:contains]->(:ExportDefault)
-[:body]->(:FunctionDeclarationClassDeclarationVariableDeclaration)
-[:name]->(exportBindingIdentifier:BindingIdentifier)
<-[:node]-(declarationToMerge:Declaration)
<-[:declarations]-(exportedVariable:Variable),

// importer.js: import { name1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND importBindingIdentifierToMerge.name = exportBindingIdentifier.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 87

A.9 exportDefaultName–importAlias

MATCH
// exporter.js: export default name1;

(exporter:CompilationUnit)-[:contains]->(:ExportDefault)
-[:body]->(exportedIdentifierExpression:IdentifierExpression)
<-[:node]-(:Reference)
<-[:references]-(exportedVariable:Variable)
-[:declarations]->(declarationToMerge:Declaration),

// importer.js: import { name1 as importedName1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportedIdentifierExpression.name = importSpecifier.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 88

A.10 exportDefaultName–importDefault

MATCH
// exporter.js: export default name1;

(exporter:CompilationUnit)-[:contains]->(:ExportDefault)
-[:body]->(exportedIdentifierExpression:IdentifierExpression)
<-[:node]-(:Reference)
<-[:references]-(exportedVariable:Variable)
-[:declarations]->(declarationToMerge:Declaration),

// importer.js: import defaultName from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:defaultBinding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 89

A.11 exportDefaultName–importName

MATCH
// exporter.js: export default name1;

(exporter:CompilationUnit)-[:contains]->(:ExportDefault)
-[:body]->(exportedIdentifierExpression:IdentifierExpression)
<-[:node]-(:Reference)
<-[:references]-(exportedVariable:Variable)
-[:declarations]->(declarationToMerge:Declaration),

// importer.js: import { name1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportedIdentifierExpression.name =

importBindingIdentifierToMerge.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 90

A.12 exportName–importAlias

MATCH
// exporter.js: let name1 = "name1Value"; export { name1 };

(exporter:CompilationUnit)-[:contains]->(:ExportLocals)
-[:namedExports]->(:ExportLocalSpecifier)
-[:name]->(exportBindingIdentifier:IdentifierExpression)
<-[:node]-(:Reference)<-[:references]-(:Variable)
-[:declarations]->(declarationToMerge:Declaration)
-[:node]->(:BindingIdentifier),

// importer.js: import { name1 as importedName1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportBindingIdentifier.name = importSpecifier.name

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

A Cypher Queries for Interconnecting the ASGs of Related Modules 91

A.13 exportName–importName

MATCH
// exporter.js: export { name1 };

(exporter:CompilationUnit)-[:contains]->(:ExportLocals)
-[:namedExports]->(exportLocalSpecifier:ExportLocalSpecifier)
-[:name]->(exportBindingIdentifier:IdentifierExpression)
<-[:node]-(:Reference)
<-[:references]-(:Variable)
-[:declarations]->(declarationToMerge:Declaration)
-[:node]->(:BindingIdentifier),

// importer.js: import { name1 } from "exporter";
(importer:CompilationUnit)-[:contains]->(import:Import)

-[:namedImports]->(importSpecifier:ImportSpecifier)
-[:binding]->(importBindingIdentifierToMerge:BindingIdentifier)
<-[:node]-(declarationToDelete:Declaration)
<-[:declarations]-(importedVariable:Variable)

WHERE
exporter.parsedFilePath CONTAINS import.moduleSpecifier
AND exportBindingIdentifier.name = importBindingIdentifierToMerge.name
AND NOT exists(exportLocalSpecifier.exportedName)
AND NOT exists(importSpecifier.name)

MERGE
(importedVariable)-[:declarations]->(declarationToMerge)

-[:node]->(importBindingIdentifierToMerge)

DETACH DELETE
declarationToDelete

B Cypher Queries of the Analyses 92

B Cypher Queries of the Analyses

B.1 nonInitialisedVariable

MATCH
(containingCompilationUnit:CompilationUnit)-[:contains]->

(variableLocation:SourceLocation)<-[:start]-(:SourceSpan)
<-[:location]-(variableReference:VariableReference)
<-[:node]-(:Reference)
<-[:references]-(subjectVariable:Variable)
-[:declarations]->(:Declaration)
-[:node]->(:VariableReference)
<-[:binding]-(variableDeclarator:VariableDeclarator)

WHERE NOT (variableDeclarator)-[:init]->()

RETURN
’Non-initialized variable’ AS message,
subjectVariable.name AS entityName,
containingCompilationUnit.parsedFilePath AS compilationUnitPath,
variableLocation.line AS line,
variableLocation.column AS column

B Cypher Queries of the Analyses 93

B.2 unusedExport — exportName-exportAlias

MATCH
(exporter:CompilationUnit)-[:contains]->(:ExportLocals)

-[:namedExports]->(exportLocalSpecifier:ExportLocalSpecifier)
-[:name]->(:VariableReference)
<-[:node]-(:Reference)
<-[:references]-(exportedVariable:Variable),

(exportLocalSpecifier)-[:location]->(:SourceSpan)
-[:start]->(exportLocation:SourceLocation)

WHERE
NOT (exportedVariable)-[:declarations]->(:Declaration)

-[:node]->(:VariableReference)
<-[:binding]-(:ImportSpecifier)

RETURN
’Globally unused export’ AS message,
exportedVariable.name AS entityName,
exporter.parsedFilePath AS compilationUnitPath,
exportLocation.line AS line,
exportLocation.column AS column

B Cypher Queries of the Analyses 94

B.3 unusedExport — exportDefault-exportDefaultName

MATCH
(exporter:CompilationUnit)-[:contains]->(exportDefault:ExportDefault)

-[:body]->(:IdentifierExpression)
<-[:node]-(:Reference)
<-[:references]-(exportedVariable:Variable),

(exportDefault)-[:location]->(:SourceSpan)
-[:start]->(exportLocation:SourceLocation),

(exporter:CompilationUnit)-[:contains]->(:ExportLocals)
-[:namedExports]->(exportLocalSpecifier:ExportLocalSpecifier)
-[:name]->(:VariableReference)
<-[:node]-(:Reference)
<-[:references]-(exportedVariable:Variable),

(exportLocalSpecifier)-[:location]->(:SourceSpan)
-[:start]->(exportLocation:SourceLocation)

WHERE
NOT (exportedVariable)-[:declarations]->(:Declaration)

-[:node]->(:VariableReference)
<-[:binding]-(:ImportSpecifier)

RETURN
’Globally unused export’ AS message,
exportedVariable.name AS entityName,
exporter.parsedFilePath AS compilationUnitPath,
exportLocation.line AS line,
exportLocation.column AS column

B Cypher Queries of the Analyses 95

B.4 unusedExport — exportDeclaration

MATCH
(exporter:CompilationUnit)-[:contains]->

(exportDeclaration:ExportDeclaration)
-[:declaration]->
(:FunctionDeclarationClassDeclarationVariableDeclaration)
-[*1..2]->(:BindingIdentifier)
<-[:node]-(:Declaration)
<-[:declarations]-(exportedVariable:Variable),

(exportDeclaration)-[:location]->(:SourceSpan)
-[:start]->(exportLocation:SourceLocation)

WHERE
NOT (exportedVariable)-[:declarations]->(:Declaration)

-[:node]->(:VariableReference)
<-[:binding]-(:ImportSpecifier)

RETURN
’Globally unused export’ AS message,
exportedVariable.name AS entityName,
exporter.parsedFilePath AS compilationUnitPath,
exportLocation.line AS line,
exportLocation.column AS column

B Cypher Queries of the Analyses 96

B.5 divisionByZero-literal — restricted

MATCH
(binaryExpression:BinaryExpression)-[:right]->

(rightValue:LiteralNumericExpression)
-[:location]->(:SourceSpan)
-[:start]->(locationStart:SourceLocation)
<-[:contains]-(containingCompilationUnit:CompilationUnit)

WHERE
binaryExpression.operator = ’Div’
AND rightValue.value = 0

RETURN
’Division by zero’ AS message,
’’ AS entityName,
containingCompilationUnit.parsedFilePath AS compilationUnitPath,
locationStart.line AS line,
locationStart.column AS column

B Cypher Queries of the Analyses 97

B.6 squareRootNegativeArgument-literal — restricted

MATCH
(containingCompilationUnit:CompilationUnit)-[:contains]->

(callExpression:CallExpression)
-[:callee]->(memberExpression:StaticMemberExpression)
-[:object]->(variableReference:VariableReference),

(callExpression)-[:arguments]->(unaryExpression:UnaryExpression)
-[:operand]->(:LiteralNumericExpression),

(callExpression)-[:location]->
(:SourceSpan)-[:start]->(entityLocation:SourceLocation)

WHERE
variableReference.name = ’Math’
AND memberExpression.property = ’sqrt’
AND unaryExpression.operator = ’Minus’

RETURN
’Square root called with negative argument’ AS message,
’’ AS entityName,
containingCompilationUnit.parsedFilePath AS compilationUnitPath,
entityLocation.line AS line,
entityLocation.column AS column

B Cypher Queries of the Analyses 98

B.7 divisionByZero-variable — transitive

MATCH
(binaryExpression:BinaryExpression)-[:right]->(rightValue:Expression)

-[:location]->(:SourceSpan)
-[:start]->(locationStart:SourceLocation)
<-[:contains]-(containingCompilationUnit:CompilationUnit),

(rightValue)-[:_qualifier]->(equalsZero:EqualsZero)

WHERE
binaryExpression.operator = ’Div’

RETURN
’Division by zero’ AS message,
’’ AS entityName,
containingCompilationUnit.parsedFilePath AS compilationUnitPath,
locationStart.line AS line,
locationStart.column AS column

B Cypher Queries of the Analyses 99

B.8 squareRootNegativeArgument-variable — transitive

MATCH
(containingCompilationUnit:CompilationUnit)-[:contains]->

(callExpression:CallExpression)
-[:callee]->(memberExpression:StaticMemberExpression)
-[:object]->(variableReference:VariableReference),

(callExpression)-[:arguments]->(argument:Expression)
-[:_qualifier]->(negativeNumeric:NegativeNumeric),

(callExpression)-[:location]->
(:SourceSpan)-[:start]->(entityLocation:SourceLocation)

WHERE
variableReference.name = ’Math’
AND memberExpression.property = ’sqrt’

RETURN
’Square root called with negative argument’ AS message,
’’ AS entityName,
containingCompilationUnit.parsedFilePath AS compilationUnitPath,
entityLocation.line AS line,
entityLocation.column AS column

B Cypher Queries of the Analyses 100

B.9 unreachableCode-exception — transitive

MATCH
(containingCompilationUnit:CompilationUnit)-[:contains]->

(statement:Statement)-[:_qualifier]->(:ExceptionThrown),
(statement)-[:_next]->(unreachableStatement:Statement),
(unreachableStatement)-[:location]->(:SourceSpan)

-[:start]->(entityLocation:SourceLocation)

RETURN
’Unreachable code’ AS message,
’’ AS entityName,
containingCompilationUnit.parsedFilePath AS compilationUnitPath,
entityLocation.line AS line,
entityLocation.column AS column

C Cypher Queries of the Quali�er System 101

C Cypher Queries of the Quali�er System

C.1 Initialising the Quali�er System

MERGE (qs:QualifierSystem)

MERGE (qs)-[:_instance]->(:Qualifier:EqualsZero)
MERGE (qs)-[:_instance]->(:Qualifier:NegativeNumeric)
MERGE (qs)-[:_instance]->(:Qualifier:ExceptionThrown)

C.2 Tagging literals with EqualsZero

MATCH
(literalNumericExpression:LiteralNumericExpression),
(qs:QualifierSystem)-[:_instance]->(equalsZero:Qualifier:EqualsZero)

WHERE
literalNumericExpression.value = 0

MERGE
(literalNumericExpression)-[:_qualifier]->(equalsZero)

C.3 Tagging throw statements with ExceptionThrown

MATCH
(throwStatement:ThrowStatement),
(qs:QualifierSystem)-[:_instance]->(exceptionThrown:ExceptionThrown)

MERGE
(throwStatement)-[:_qualifier]->(exceptionThrown)

D Cypher Queries for Quali�er Propagation 102

D Cypher Queries for Quali�er Propagation

D.1 Propagation along function calls

MATCH
(callExpression:CallExpression)-[:callee]->(:Expression)

-[:_qualifier]->(qualifier:Qualifier)

MERGE
(callExpression)-[:_qualifier]->(qualifier)

D.2 Propagation along function declarations

MATCH
(qualifier:Qualifier)<-[:_qualifier]-(functionDeclaration:FunctionDeclaration)

-[:name]->(bindingIdentifier:BindingIdentifier)

MERGE
(bindingIdentifier)-[:_qualifier]->(qualifier)

D.3 Propagation along function return statements

MATCH
(function:Function)-[:body]->(:FunctionBody)

-[:statements]->(:ReturnStatement)
-[:expression]->(:Expression)
-[:_qualifier]->(qualifier:Qualifier)

MERGE
(function)-[:_qualifier]->(qualifier)

D.4 Propagation along throw statements in functions

MATCH
(function:Function)-[:body]->(:FunctionBody)

-[:statements]->(:ThrowStatement)
-[:_qualifier]->(qualifier:Qualifier)

MERGE
(function)-[:_qualifier]->(qualifier)

D Cypher Queries for Quali�er Propagation 103

D.5 Propagation along variable declarations

MATCH
(variable:Variable)-[:declarations]->(:Declaration)

-[:node]->(:BindingIdentifier)
-[:_qualifier]->(qualifier:Qualifier)

MERGE
(variable)-[:_qualifier]->(qualifier)

D.6 Propagation along variable declaration statements

MATCH
(variableDeclarationStatement:VariableDeclarationStatement)

-[:declaration]->(variableDeclaration:VariableDeclaration)
-[:declarators]->(variableDeclarator:VariableDeclarator)
-[:binding]->(:BindingIdentifier)-[:_qualifier]->(qualifier:Qualifier)

MERGE
(variableDeclarationStatement)-[:_qualifier]->(qualifier)

MERGE
(variableDeclaration)-[:_qualifier]->(qualifier)

MERGE
(variableDeclaration)-[:_qualifier]->(qualifier)

D.7 Propagation along variable initialisations

MATCH
(expression:Expression)-[:_qualifier]->(qualifier:Qualifier),
(expression)<-[:init]-(:VariableDeclarator)-[:binding]

->(:BindingIdentifier)<-[:node]-(:Reference)
<-[:references]-(variable:Variable)

MERGE
(variable)-[:_qualifier]->(qualifier)

D.8 Propagation along variable references

MATCH
(variable:Variable)-[:_qualifier]->(qualifier:Qualifier),
(variable)-[:references]->(:Reference)

-[:node]->(variableReference:VariableReference)

MERGE
(variableReference)-[:_qualifier]->(qualifier)

E Selected Open-Source Repositories for the Evaluation 104

E Selected Open-Source Repositories for the Evaluation

Apart from the tresorit/webclient—which is a closed-source, security-oriented indus-
trial project from the cloud-security company Tresorit —, every source code repository
has been selected and downloaded from GitHub1, a popular web-based repository hosting
service for the Git version control system. The below format denotes owner/repository.

E.1 Repository and Graph Data

Ja
va
Sc
rip

tS
LO

C
ex
cl.

co
m
m
en

ts

Nu
m
be

ro
fJ
av
aS
cr
ip
ts
ou

rc
efi

le

Nu
m
be

ro
fn

od
es

in
th
eA

SG

Nu
m
be

ro
fr
el
at
io
ns
hi
ps

in
th
eA

SG

initialstate/silent-doorbell 15 2 686 2,306
babel/example-node-server 17 2 573 1,900
bradtraversy/rxjs_boiler 19 2 340 1,104
tj/deferred.js 29 3 1,152 3,927
karma-runner/gulp-karma 32 4 988 3,232
scotch-io/node-web-scraper 34 1 1,559 5,326
brettlangdon/jsnice 36 1 1,460 4,976
facundoolano/promise-log 41 1 533 1,816
jinzhe/vue-editable 41 1 1,479 5,092
callmecavs/gotem 44 2 1,172 3,998
Heydon/forceFeed 48 1 2,205 7,574
varHarrie/Dawn-Blossoms 50 2 2,369 8,120
kmewhort/pointer_events_polyfill 54 1 1,595 5,402
bodil/eslint-config-cleanjs 55 1 973 3,238
Verba/jquery-readyselector 71 2 2,754 9,378
scotch-io/node-api 74 2 2,782 9,376
kolodny/wavy 79 2 3,186 11,068

1https://github.com

E Selected Open-Source Repositories for the Evaluation 105

Ja
va
Sc
rip

tS
LO

C
ex
cl.

co
m
m
en

ts

Nu
m
be

ro
fJ
av
aS
cr
ip
ts
ou

rc
efi

le

Nu
m
be

ro
fn

od
es

in
th
eA

SG

Nu
m
be

ro
fr
el
at
io
ns
hi
ps

in
th
eA

SG

bas2k/jquery.appear 81 1 3,158 10,896
bevacqua/trunc-html 89 2 3,061 10,452
tj/node-trace 89 2 3,429 11,690
louisondumont/facematch 93 6 3,174 10,692
bilbof/purser 97 4 6,232 21,200
markdalgleish/react-themeable 112 2 3,299 11,160
OutSystems/AutoAnimations 125 1 3,965 13,802
sindresorhus/grunt-sass 145 3 4,185 14,154
dissimulate/Tearable-Cloth 184 1 6,708 23,369
ebidel/appmetrics.js 307 6 13,244 45,578
BohemianCoding/sketch-image-compressor 367 2 13,825 47,879
eduardomb/scroll-up-bar 457 7 17,129 59,224
mewo2/naming-language 463 1 11,398 39,044
angular-ui/ui-codemirror 580 6 19,027 65,344
angular-app/Samples 3,310 123 118,811 402712
mzabriskie/axios 3,863 76 146,178 498,722
alvin198761/web-os 5,922 67 205,115 707,597
reactjs/redux 6,036 158 56,750 192,018
joyent/node-workflow 6,143 20 191,449 653,107
facebookincubator/create-react-app 6,855 141 97,933 335,169
freeCodeCamp/freeCodeCamp 11,823 177 163,070 551,500
vuejs/vue 12,982 188 81,619 282,253
tresorit/webclient 34,546 609 1,346,776 4,576,319

E Selected Open-Source Repositories for the Evaluation 106

E.2 Measurement Results

Du
ra
tio

n
of

sy
nc

hr
on

isa
tio

n

Du
ra
tio

n
of

in
te
rc
on

ne
ct
io
n

Du
ra
tio

n
of

ru
nn

in
gt

he
Qu

al
ifi
er

Sy
st
em

Du
ra
tio

n
of

th
ea

na
ly
se
s

initialstate/silent-doorbell 1,497,553 µs 13,367 µs 2,650,105 µs 87,580 µs
babel/example-node-server 932,053 µs 2,702,617 µs 2,171,579 µs 3,091,490 µs
bradtraversy/rxjs_boiler 1,202,026 µs 3,577,111 µs 4,531,478 µs 6,583,445 µs
tj/deferred.js 5,539,918 µs 15,038 µs 3,294,333 µs 5,358,816 µs
karma-runner/gulp-karma 1,521,805 µs 2,663,639 µs 2,123,288 µs 6,016,907 µs
scotch-io/node-web-scraper 1,991,224 µs 11,180 µs 2,181,329 µs 64,417 µs
brettlangdon/jsnice 1,909,302 µs 7,215 µs 1,943,869 µs 43,765 µs
facundoolano/promise-log 7,116,37 µs 2,515,415 µs 1,586,458 µs 54,952 µs
jinzhe/vue-editable 2,669,613 µs 8,086 µs 2,635,767 µs 2,409,739 µs
callmecavs/gotem 2,763,192 µs 1,033,612 µs 7,960,501 µs 2,625,625 µs
Heydon/forceFeed 3,146,354 µs 7,280 µs 2,222,943 µs 52,337 µs
varHarrie/Dawn-Blossoms 3,672,140 µs 2,450,689 µs 2,107,809 µs 53,592 µs
kmewhort/pointer_events_polyfill 2,164,437 µs 7,563 µs 1,996,131 µs 104,837 µs
bodil/eslint-config-cleanjs 1,445,878 µs 26,147 µs 3,276,381 µs 41,178 µs
Verba/jquery-readyselector 5,290,469 µs 3,585,861 µs 3,501,627 µs 6,432,633 µs
scotch-io/node-api 3,777,201 µs 8,681 µs 4,124,129 µs 37,368 µs
kolodny/wavy 4,570,584 µs 5,468 µs 1,994,231 µs 54,605 µs
bas2k/jquery.appear 5,448,897 µs 10,726 µs 2,269,582 µs 5,208,812 µs
bevacqua/trunc-html 4,327,909 µs 11,221 µs 1,986,631 µs 6,669,424 µs
tj/node-trace 11,879,062 µs 12,639,721 µs 6,610,741 µs 7,725,408 µs
louisondumont/facematch 4,626,696 µs 5,967 µs 2,161,497 µs 64,844 µs
bilbof/purser 8,663,335 µs 2,668,585 µs 2,390,193 µs 3,090,801 µs
markdalgleish/react-themeable 5,162,753 µs 2,189,079 µs 2,393,060 µs 6,524,218 µs
OutSystems/AutoAnimations 6,269,249 µs 2,653,444 µs 2,098,536 µs 5,944,605 µs
sindresorhus/grunt-sass 5,483,316 µs 2,017,179 µs 2,122,158 µs 2,968,374 µs
dissimulate/Tearable-Cloth 12,913,704 µs 240,211 µs 2,804,645 µs 2,172,038 µs
ebidel/appmetrics.js 21,597,123 µs 2,657,964 µs 2,590,861 µs 5,978,452 µs
BohemianCoding/sketch-image-compressor 30,141,715 µs 2,128,170 µs 3,716,391 µs 5,902,471 µs
eduardomb/scroll-up-bar 24,928,994 µs 2,664,088 µs 2,214,006 µs 85,223 µs
mewo2/naming-language 50,654,490 µs 2,900,949 µs 4,030,616 µs 4,063,752 µs
angular-ui/ui-codemirror 79,015,546 µs 3,832,991 µs 3,574,924 µs 6,571,692 µs
angular-app/Samples 221,836,333 µs 6,233,693 µs 5,411,927 µs 8,201,479 µs
mzabriskie/axios 345,069,568 µs 2,894,648 µs 7,629,029 µs 5,965,491 µs
alvin198761/web-os 1,126,669,966 µs 3,167,234 µs 38,086,892 µs 5,852,797 µs
reactjs/redux 115,551,087 µs 7,887,990 µs 7,517,116 µs 7,368,536 µs
joyent/node-workflow 1,036,041,011 µs 5,412,719 µs 5,729,655 µs 7,454,727 µs
facebookincubator/create-react-app 200,879,187 µs 3,702,773 µs 3,512,440 µs 3,223,522 µs
freeCodeCamp/freeCodeCamp 243,149,247 µs 3,074,393 µs 3,997,613 µs 5,563,976 µs
vuejs/vue 273,768,964 µs 1,862,202 µs 5,625,412 µs 4,905,929 µs
tresorit/webclient 4,651,047,877 µs 26,838,424 µs 36,416,152 µs 5,588,438 µs

	Contents
	Kivonat
	Abstract
	Introduction
	Context
	Problem Statement and Requirements
	Objectives and Contributions
	Structure of the Thesis

	Preliminaries
	Static Analysis
	Introduction
	Source Code Transformation
	Use Cases and Limitations

	JavaScript
	Brief History of JavaScript
	The ECMAScript as a Standard and as a Language
	The Process of Transpiling
	Looking into the Goals of JavaScript Static Analysis

	Graph Databases
	The Property Graph Data Model
	Neo4j
	Cypher

	Running Example

	Related Work
	Static Analysis Tools for JavaScript
	TAJS (Type Analysis for JavaScript)
	Flow
	Tern
	SonarQube
	Shift
	Esprima
	Comparison of the Featured Tools

	Static Analysis Tools for Java
	FindBugs
	PMD
	jQAssistant

	Static Analysis Tools for C and C++
	Clang
	PolySpace
	Coverity

	Most Used Error-Checking Constraints

	Overview of the Approach
	Rearchitecturing the Codemodel-Rifle Framework
	Open-Sourcing and Licensing Issues
	Decomposing the Architecture
	Optimising for Testing Purposes
	Solutions to Speed-Related Issues
	Other Performances
	Summary of Refactoring

	In Development: Steps of Building New Analyses
	Visualising the Defect with Codemodel-Visualisation
	Describing the Defect Pattern
	Implementing the Analysis

	In Production: Steps of Operating Live
	Import: Synchronising the Repository into the Framework
	Interconnect: Connecting the Related ECMAScript Modules
	Analyse: Performing Analyses

	Elaboration of the Workflow
	Interconnecting Related ECMAScript Modules
	The ECMAScript Module System
	Export Syntaxes and Cases
	Import Syntaxes and Cases
	Number of Export-Import Combinations
	Compatibility of the Export-Import Cases
	Unsupported Cases
	Pattern Generalisation Techniques
	Implementing the Interconnection Algorithms

	Simple Analyses by Pattern Matching
	Uninitialised Variables
	Globally Unused Exports
	Division By Zero (restricted)
	Misuse of Negative Integers as Function Arguments (restricted)

	Complex Analyses with the Qualifier System
	Transitive Defects
	Introduction: The Qualifier System
	The Running Example's Division By Zero (transitive)
	Misuse of Negative Integers as Function Arguments (transitive)
	Unreachable Code Caused by Exception (transitive)

	Limitations of the Analyses

	Evaluation of Performance
	Evaluation Environment
	Computer Configuration
	Software Configuration

	Measurement Goals and Methods
	Selection Criteria of the Analysed Source Code Repositories
	Key Performance Indices
	Process of Measurement

	Measurement Results
	Synchronisation
	Interconnection
	The Qualifier System
	Analysis
	Total Duration of the Analysis Process

	Defects Found by the Framework
	Threats to Validity

	Conclusion and Future Work
	Summary of Contributions
	Scientific Contributions
	Engineering Contributions

	Future Work

	Acknowledgements
	References
	Appendix
	Cypher Queries for Interconnecting the ASGs of Related Modules
	exportAlias–importAlias
	exportAlias–importDefault
	exportAlias–importName
	exportDeclaration–importAlias
	exportDeclaration–importName
	exportDefaultDeclaration–importAlias
	exportDefaultDeclaration–importDefault
	exportDefaultDeclaration–importName
	exportDefaultName–importAlias
	exportDefaultName–importDefault
	exportDefaultName–importName
	exportName–importAlias
	exportName–importName

	Cypher Queries of the Analyses
	nonInitialisedVariable
	unusedExport — exportName-exportAlias
	unusedExport — exportDefault-exportDefaultName
	unusedExport — exportDeclaration
	divisionByZero-literal — restricted
	squareRootNegativeArgument-literal — restricted
	divisionByZero-variable — transitive
	squareRootNegativeArgument-variable — transitive
	unreachableCode-exception — transitive

	Cypher Queries of the Qualifier System
	Initialising the Qualifier System
	Tagging literals with EqualsZero
	Tagging throw statements with ExceptionThrown

	Cypher Queries for Qualifier Propagation
	Propagation along function calls
	Propagation along function declarations
	Propagation along function return statements
	Propagation along throw statements in functions
	Propagation along variable declarations
	Propagation along variable declaration statements
	Propagation along variable initialisations
	Propagation along variable references

	Selected Open-Source Repositories for the Evaluation
	Repository and Graph Data
	Measurement Results

